Лепка для детей 2-6 лет: мастер-классы поделок из пластилина

Польза лепки из пластилина для детей

Лепка из пластилина – это один из важных элементов в формировании ребенка. С помощью такого занятия к роха развивает умственные способности, мелкую моторику , усидчивость. Приступать к подобной деятельности можно с самого раннего возраста. Пластилин – мягкий и податливый материал , трансформирующейся в любую желаемую фигурку. Как научиться и что можно слепить — расскажем в статье.

История возникновения

Изобретение вещества для лепки приписывают 2 ученым. Франц Колб придумал материал для создания моделей в конце 19 века. Вильям Харбутт изобрел пластичную массу в 1987 году. Позже выяснилось, что оба вещества имеют идентичную структуру и применение. Поэтому они получили одинаковое название.

Сейчас материал пользуется широким спросом. Его применяют в различных отраслях (моделирование, рукоделие, мультипликация, развитие детей и другое). Использование пластилина продолжается уже больше века. Множество поделок и композиций зафиксированы в книге Рекордов Гиннесса.

Польза

В большинстве стран уроки лепки– неотъемлемая часть образовательного процесса детей. Чаще всего занятия присутствуют в детских садах, чтобы обучать малышей с раннего возраста творчеству и абстрактному мышлению. Путем исследований было выявлено, что упражнения с пластичной массой развивают:

  1. Мелкую моторику рук.
  2. Концентрацию внимания;
  3. Координацию движений.
  4. Мыслительный процесс.
  5. Усидчивость.
  6. Познавательную активность.
  7. Память
  8. Творческий потенциал.

Пластилин оказывает релаксирующие и успокоительное действие. Во время занятий с ним малыш не отвлекается на внешние раздражители (телевизор, гаджеты и т.д.), а значит его головной мозг отдыхает от бесконечного потока информации на экранах.

Способы лепки

Для перехода к конкретному виду создания композиции ребенка нужно обучать поэтапно. Сначала с ним изучают отдельную методику изготовления деталей (колбаски, шарики и т.д.). После показывают, какие еще манипуляции (отщипывание, оттягивание, резка) можно совершать с материалом. Знания, полученные в ходе упражнений, закрепляются и ребенку предлагают один из трех способов работы с пластилином:

1.Скульптурный. Поделка изготавливается из целого кусочка, без добавления элементов. Дети учатся пропорционально распределять пластилин с помощью таких приемов:

  • растягивание;
  • прищипывание;
  • сглаживание;
  • раскатывание.

2. Конструктивный. Изделие собирают из разных частей. Сначала подготавливают самую крупную деталь, а после крепят на нее маленькие. Способ обучает детей отличать мелкие предметы от больших.

3. Комбинированный. Включает в себя два вышеперечисленных метода. Из цельного куска делается туловище. Другие части изготавливают отдельно и крепят к готовой фигуре.

Способы лепки разделяются на виды исходя из сюжета.

  • Предметная – изготовление отдельного персонажа или объекта.
  • Сюжетная – создание группы предметов, взаимосвязанных между собой (изображение сцен из сказок, стихов, рассказов).
  • Декоративная – форма искусства для создания композиций из народного творчества.

Чтобы легче было выполнять поделки существуют специальные приспособления. Стеки – это инструменты для лепки. С их помощью изготавливают мелкие детали, которые невозможно эстетично воплотить пальцами.

Стеки бывают металлические, пластиковые, силиконовые, деревянные. Выбор приспособлений зависит от будущего изделия.

Перед тем как приступить к занятиям продумайте, как сделать легкий и познавательный урок. Важно учитывать, что именно интересует кроху. Задействуйте дополнительные предметы (шишки, ленточки, бусинки и т.д.). Что изготавливают из пластилина:

  • Животных (мишка, слоник, собачка, улитка и другие).
  • Тематические композиции. Например, на тему лето. Трудно найти малыша, который не любит теплые деньки. Изобразите солнышко, небо, цветы, море. Проявите фантазию вместе с крохой.
  • Деревья.
  • Овощи и фрукты.
  • Сладости. Особенно детям нравится делать любимые лакомства.
  • Насекомые (бабочка, стрекоза).
  • Сказочные герои.
  • Танки, самолеты, машинки.

Важно! Перед подготовкой к уроку учитывайте возраст ребенка. Изготовление фигурок проводите поэтапно, чтобы не запутать малыша. Он должен запомнить процесс полностью. При необходимости повторите занятие.

Что лепить с детьми 2 лет

С младшей группой детей уроки проводят с воздушным и мягким пластилином. Обычная масса не подходит из-за твердой структуры. Крохе будет тяжело ее разминать неокрепшими пальчиками.

Поначалу малышам предлагают легкие задачи. Идеи занятий:

  • Покажите, как рвать на кусочки (крупные и мелкие) материал.
  • Катайте шарики. Потом расплющивайте их на бумаге или картоне.
  • Давите шарики на лепешки в ладонях.
  • Крутите колбаски. Их можно скручивать колечками.
  • Крепите палочки из пластилина между собой полукругом, чтобы образовать радугу.

После освоения элементарных манипуляций, преступайте к более сложным задачам:

  • На доске режьте крупные колбаски. Должны получаться колечки.
  • Вырезайте различные геометрические фигуры. Для этого сделайте шарик и распластайте его на картоне. Ножиком разрезайте массу на формы.
  • Размажьте на доске или бумаге пластилин. Прикрепляйте на его поверхность любые предметы (бусинки, крупы, семена).

Важно! Упражнения проводите не более 15 минут. Чтобы ребенок не переутомлялся. Для работы выбирайте 5-6 цветов. Не перегружайте кроху обилием оттенков.

Уроки для детей 3-4 лет

В средней группе малыши уже научились обращаться с мягкой детской массой. Поэтому можно выбирать обычный пластилин для работы. Ребенок уже способен изготовить поделку. Идеи занятий:

  • Снеговик. Возьмите массу белого цвета. Попросите ребенка скатать три шарика разных размеров. Соедините детали фигурки. С помощью бусинок сделайте глазки. Ротик можно сделать из массы красного цвета, а носик из оранжевого.
  • Пицца или пирог. Пусть малыш сделает коричневый шарик побольше. Потом расплющит его в лепешку. На поверхность можно выкладывать бусинки, крупу, макароны, стразы и т.д.
  • Ежик. Сделайте коричневый шарик в виде мордочки слегка приплюснутый в месте крепления. Приклейте его к задней части сосновой шишки. Вытяните носик из пластилина, а на его кончик прикрепите маленький черный шарик. Затем добавьте глазки зверьку.
  • Полянка. Возьмите маленькую крышку. На дне равномерно раскатайте пластилин зеленого оттенка. Бортики украсьте колбаской любого цвета. Сделайте белые ножки грибочкам. Закрепите на них шляпки с белыми точечками. Готовые грибы размещайте на полянке.

Подобные занятия выполняйте не более 20 минут. Но, если малыш захочет продолжить дайте ему немного времени (5-10 минут). Набор цветовых гамм к этому возрасту можно разнообразить.

Лепка с детьми 5-6 лет

Со старшей детской группой уже используют более сложные упражнения. Лепка становиться четкой и с ее помощью можно создавать целые композиции (открытки, сказочные или мультипликационные сюжеты). Идеи работ:

  • Осеннее дерево.Приготовьте заранее арбузные семечки и картонную бумагу. На картоне равномерно распределите массу зеленого цвета. Обрамление открытки сделайте с помощью оранжевых или желтых колбасок. Сделайте коричневый ствол дерева. Прикрепите его к картинке. Добавьте тонкие веточки и на каждую крепите семечки, которые играют роль листьев в поделке. Раскрасьте их поверхность разными оттенками пластилина.
  • Лето с элементами рисования. Раскрасьте белый картон на пополам. Сверху используйте голубой карандаш, а снизу зеленый. На «небе» крепите белые облака из лепешек, солнце из колбасок и кружочка. Внизу сделайте дерево, цветочек на травке, бабочку. Пусть ребенок пофантазирует и добавит свои детали.
  • Новогодняя сказка:
  1. Приготовьте дощечку, клей, пластилин, карандаш, маникюрные ножницы, вату, пенопласт.
  2. Зеленную массу разминайте, создавая из нее конусообразную фигурку.
  3. Снизу вставьте в нее карандаш. Он будет служить стволом.
  4. Начиная с вершины конуса делайте надрезы ножницами. Они должны быть в шахматном порядке.
  5. На веточки крепите маленькие разноцветные шарики.
  6. Ствол елочки вставьте в небольшой кусочек пенопласта. Приклейте его к доске.

7. Дополнительно сделайте снеговика. Можно добавить животных или других персонажей.

8. Когда все герои будут установлены, приклейте кусочки ваты вокруг них, имитируя снег.

Проявляйте фантазию и создавайте свои уникальные поделки вместе с крохой. Различные схемы и мастер классы по изготовлению фигурок можно найти в интернете, книгах, пособиях. Если ребенок увлечется всерьез занятиями, то сейчас существуют специальные обучающие кружки, студии по работе с пластилином.

Устный счет: техника быстрого счета в уме

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет – это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются – как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети – ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды – ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем – единицы.

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел – это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения – это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения – с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

умножить на 4 – это дважды умножить на 2;

умножить на 6 – это значит умножить на 2, а потом на 3;

умножить на 8 – это трижды умножить на 2;

умножить на 9 – это дважды умножить на 3.

разделить на 4 – это дважды разделить на 2;

разделить на 6 – это сначала разделить на 2, а потом на 3;

разделить на 8 – это трижды разделить на 2;

разделить на 9 – это дважды разделить на 3.

Как умножать и делить на 5

Число 5 – это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма. Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение. Встречаются такие задачи очень редко – это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах. Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы – это очень наглядно и удобно. Диапазон таких вычислений очень ограничен. Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа – единицам. В нашем примере – 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это – из области фокусов. Правило действует только при умножении на 9. А не проще ли, для умножения 5 на 9 выучить таблицу умножения? Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь.

Устный счёт на автомате

Во-первых, необходимо хорошо знать состав числа и таблицу умножения.

Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.

В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» – упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку – и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

Приемы быстрого счета без калькулятора

Хоть и считается, что математика наводит ужас на значительную часть населения, но деньги считать умеют все. И вот как раз влет это умеют делать люди, далекие от математики.

Помнится, бабушка моего мужа показывала ему на пальцах таблицу умножения на 9. Никакого образования, только огромная практика торговли редиской и клубникой на рынке!

Так вот сегодня я предлагаю вам несколько интересненьких приемов устного счета. Ведь сколько бы замечательных гаджетов (телефоны, смартфоны, айподы и айпады, ай, да чего там…) своя голова она всегда лучше.

  • 1 Устный счет — приемы
    • 1.1 1. Умножение на 11
    • 1.2 2. Быстрое возведение в квадрат
    • 1.3 3. Умножение на 5
    • 1.4 4. Умножение на 9
    • 1.5 5. Умножение на 4
    • 1.6 6. Подсчет чаевых
    • 1.7 7. Сложное умножение
    • 1.8 8. Деление на 5
    • 1.9 9. Вычитание из 1000
    • 1.10 Интересные результаты:
    • 1.11 Любимая цифра.
    • 1.12 Угадать возраст.
    • 1.13 Всегда девятка
Читайте также:  Как просто нарисовать животных с детьми – поэтапные схемы

Устный счет — приемы

Итак, читаем, тут же проверяем и запоминаем приемы вычисления в уме.

1. Умножение на 11

Умножать на 11 чуть сложнее, чем умножать на 10. Закономерность здесь такая:

53 х 11 = 583
Шаг 1 — Складываем две цифры двузначного числа: 5 + 3 = 8
Шаг 2 — Помещаем результат между двумя числами двузначного числа: 583

59 х 11 = 649
Шаг 1 — 5 + 9 = 14
Шаг 2 — Перекидываем единицу налево, если сумма на предыдущем шаге оказалась больше 9: 5 + 1 = 6 (справа остается второй символ, в данном случае это четверка)
Шаг 3 — На первый символ мы единицу уже перекинули, получили 6. Далее у нас осталась 4, которую ставим в центр, и дописываем 9: 649

2. Быстрое возведение в квадрат

Этот прием поможет быстро возвести в квадрат двузначное число, которое заканчивается на 5.

85 х 85 = 7225
Шаг 1 — Умножаем первую цифру на первую цифру, увеличенную на единицу: 8 x (8 + 1) = 72
Шаг 2 — Дописываем к получившемуся результату 25: 7225

45 x 45 = 2025
Шаг 1 — 4 х (4 + 1) = 20
Шаг 2 — 2025

3. Умножение на 5

Большинство людей очень просто запоминает таблицу умножения на 5, но, когда приходится иметь дело с большими числами, сделать это становится сложнее. Или нет? Этот прием невероятно прост.

Возьмите любое число, разделите на 2 (другими словами, поделите пополам). Если в результате получилось целое число, припишите 0 в конце. Если нет, не обращайте внимание на запятую и в конце добавьте 5.

Это срабатывает всегда:
2682×5 = (2682 / 2) & 5 или 0
2682 / 2 = 1341 (целое число, поэтому добавьте 0)
13410
Давайте попробуем другой пример:
5887×5
2943,5 (дробное число, пропустите запятую, добавьте 5)
29435

4. Умножение на 9

Это просто. Чтобы умножить любое число от 1 до 9 на 9, посмотрите на руки. Загните палец, который соответствует умножаемому числу (например 9×3 – загните третий палец), посчитайте пальцы до загнутого пальца (в случае 9×3 – это 2), затем посчитайте после загнутого пальца (в нашем случае – 7). Ответ – 27.

5. Умножение на 4

Это очень простой прием, хотя очевиден лишь для некоторых. Хитрость в том, что нужно просто умножить на 2, а затем опять умножить на 2:
58×4 = (58×2) + (58×2) = (116) + (116) = 232

6. Подсчет чаевых

Если вам нужно оставить 15% чаевых, есть простой способ сделать это.

Высчитайте 10% (разделите число на 10), а потом добавьте получившееся число к его половине и получите ответ:
15% от $25 = (10% от 25) + ((10% от 25) / 2)
$2.50 + $1.25 = $3.75

И, как следствие): чтобы умножить число на 1,5 нужно к исходному числу прибавить его половину. Например,

7. Сложное умножение

Если вам нужно умножать большие числа, причем одно из них — четное, вы можете просто перегруппировать их, чтобы получить ответ:
32×125 все равно, что:
16×250 все равно, что:
8×500 все равно, что:
4×1000 = 4,000

8. Деление на 5

На самом деле делить большие числа на 5 очень просто. Все, что нужно,— просто умножить на 2 и перенести запятую: 195 / 5
Шаг1: 195×2 = 390
Шаг2: Переносим запятую: 39,0 или просто 39.
2978 / 5
Шаг1: 2978×2 = 5956
Шаг2: 595,6

9. Вычитание из 1000

Чтобы выполнить вычитание из 1000, можете пользоваться этим простым правилом: Отнимите от 9 все цифры, кроме последней. А последнюю цифру отнимите от 10:

Шаг1: от 9 отнимите 6 = 3
Шаг2: от 9 отнимите 4 = 5
Шаг3: от 10 отнимите 8 = 2
Ответ: 352

И, напоследок, несколько математических трюков:

Интересные результаты:

1 х 1 = 1
11 х 11 = 121
111 х 111 = 12321
1111 х 1111 = 1234321
11111 х 11111 = 123454321
111111 х 111111 = 12345654321
1111111 х 1111111 = 1234567654321
11111111 х 11111111 = 123456787654321
111111111 х 111111111 = 12345678987654321

1 х 9 + 2 = 11
12 х 9 + 3 = 111
123 х 9 + 4 = 1111
1234 х 9 + 5 = 11111
12345 х 9 + 6 = 111111
123456 х 9 + 7 = 1111111
1234567 х 9 + 8 = 11111111
12345678 х 9 + 9 = 111111111
123456789 х 9 + 10 = 1111111111

9 х 9 + 7 = 88
98 х 9 + 6 = 888
987 х 9 + 5 = 8888
9876 х 9 + 4 = 88888
98765 х 9 + 3 = 888888
987654 х 9 + 2 = 8888888
9876543 х 9 + 1 = 88888888
98765432 х 9 + 0 = 888888888

1 х 8 + 1 = 9
12 х 8 + 2 = 98
123 х 8 + 3 = 987
1234 х 8 + 4 = 9876
12345 х 8 + 5 = 98765
123456 х 8 + 6 = 987654
1234567 х 8 + 7 = 9876543
12345678 х 8 + 8 = 98765432
123456789 х 8 + 9 = 987654321

Любимая цифра.

Предложите задумать свою любимую цифру. А теперь выполните умножение (на калькуляторе) числа 15873 на любимую цифру, умноженную на 7. Например, если любимая цифра 5, то умножить нужно на 35. Получится произведение, записанное только любимой цифрой.

Возможен и второй вариант: умножить число 12345679 на любимую цифру, умноженную на 9, в нашем случае это число 45.

Объяснение этого фокуса достаточно простое: если умножить 15873 на 7, то получится 111111, а если умножить 12345679 на 9, то получится 111111111.

Угадать возраст.

Умножаем число своих лет на 10, затем любое однозначное число умножить на 9, из первого произведения вычесть второе и сообщить полученную разность. В этом числе “фокусник” должен цифру единиц сложить с цифрой десятков – получится число лет.

Всегда девятка

Предложите кому-нибудь написать число из трех разных цифр, под ним — написать число из этих же цифр, но в обратном порядке. Затем вычесть меньшее из большего. Когда зритель это сделает, скажите ему, что в середине числа стоит девятка.

Секрет фокуса: Вы будете правы, потому что девятка всегда будет в середине независимо от того, какие цифры написаны.

Эффективные способы быстрого счета в уме

Многие спрашивают, как научиться быстро считать в уме, чтобы это выглядело незаметно и неглупо. Ведь современные технологии позволяют меньше пользоваться своей памятью и умственными способностями. Но иногда нет под рукой данных технологий и порой легче и быстрее посчитать что-то в уме. Многие люди начали считать на калькуляторе или телефоне даже элементарные вещи, что также не очень хорошо. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него. Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу – это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят научиться организовывать себя в различных жизненных ситуациях. Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».

  1. Способы быстрого счета
  2. Вычитание 7, 8, 9
  3. Умножение на 9
  4. Деление и умножение на 4 и 8
  5. Умножение на 5
  6. Умножение на 25
  7. Умножение на однозначные числа
  8. Определение диапазонов
  9. Раскладка на десятки и единицы
  10. Мысленная визуализация умножения в столбик
  11. Частные методики умножения двузначных чисел до 30
  12. Умножение на 11
  13. Квадрат суммы, квадрат разности
  14. Опорное число
  15. Заключение

Способы быстрого счета

Существует определенный набор простейших арифметических правил и закономерностей, которые не только нужно знать для устного счета, но и постоянно держать в голове, чтобы в нужный момент оперативно применить самый эффективный алгоритм. Для этого необходимо довести их использование до автоматизма, закрепить в машинальной памяти, чтобы от решения самых простых примеров успешно перейти к более сложным арифметическим действиям. Вот основные алгоритмы, которые нужно знать, помнить и применять мгновенно, автоматически:

Вычитание 7, 8, 9

Чтобы вычесть 9 из любого числа, нужно вычесть из него 10 и прибавить 1. Чтобы вычесть 8 из любого числа, нужно вычесть из него 10 и прибавить 2. Чтобы вычесть 7 из любого числа, нужно вычесть из него 10 и прибавить 3. Если обычно вы считаете по-другому, то для лучшего результата вам нужно привыкнуть к этому новому способу.

Умножение на 9

Быстро умножить любое число на 9 можно при помощи пальцев рук.

Деление и умножение на 4 и 8

Деление (или умножение) на 4 и на 8 являются двукратным или трехкратным делением (или умножением) на 2. Производить эти операции удобно последовательно.

Например, 46*4=46*2*2 =92*2= 184.

Умножение на 5

Умножать на 5 очень просто. Умножение на 5, и деление на 2 – это практически одно и то же. Так 88*5=440, а 88/2=44, поэтому всегда умножайте на 5, поделив число на 2 и умножив его на 10.

Умножение на 25

Умножение на 25 соответствует делению на 4 (с последующим умножением на 100). Так 120*25 = 120/4*100=30*100=3000.

Умножение на однозначные числа

Чтобы быстро считать в уме, полезно уметь умножать двузначные и трехзначные числа на однозначные. Для этого нужно умножать двух- или трехзначное число поразрядно.

Например, умножим 83*7.

Для этого сначала умножим 8 на 7 (и допишем ноль, так как 8 — разряд десятков), и прибавим к этому числу произведение 3 и 7. Таким образом, 83*7=80*7 +3*7= 560+21=581.

Возьмем более сложный пример: 236*3.

Итак, умножаем сложное число на 3 по разрядно: 200*3+30*3+6*3=600+90+18=708.

Определение диапазонов

Чтобы не запутаться в алгоритмах и по ошибке не выдать совсем неверный ответ, важно уметь строить примерный диапазон ответов. Так умножение однозначных чисел друг на друга может дать результат не более 90 (9*9=81), двузначных — не более 10 000 (99*99=9801), трехзначных не более — 1 000 000 (999*999=998001).

Раскладка на десятки и единицы

Способ заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 +3*5=4800+300+240+15=5355

Проще такие примеры решаются в 3 действия:

1. Сначала умножаются десятки друг на друга.
2. Потом складываются 2 произведения единиц на десятки.
3. Затем прибавляется произведение единиц.

Схематично это можно описать так:

— Первое действие: 60*80 = 4800 — запоминаем
— Второе действие: 60*5+3*80 = 540 – запоминаем
— Третье действие: (4800+540)+3*5= 5355 – ответ

Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.

Мысленная визуализация умножения в столбик

56*67 – посчитаем в столбик. Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа.

Но его можно упростить:
Первое действие: 56*7 = 350+42=392
Второе действие: 56*6=300+36=336 (ну или 392-56)
Третье действие: 336*10+392=3360+392=3 752

Частные методики умножения двузначных чисел до 30

Преимуществом трех способов умножения двузначных для устного счета состоит в том, что они универсальны для любых чисел и при хорошем навыке устного счета, они могут позволить вам достаточно быстро прийти к правильному ответу. Однако эффективность умножения некоторых двузначных чисел в уме может быть выше за счет меньшего количества действий при использовании специальных алгоритмов.

Умножение на 11

Чтобы умножить любое двузначное число на 11, нужно между первой и второй цифрой умножаемого числа вписать сумму первой и второй цифры.

Например: 23*11, пишем 2 и 3, а между ними ставим сумму (2+3). Или короче, что 23*11= 2 (2+3) 3 = 253.

Если сумма чисел в центре дает результат больше 10, тогда добавляем единицу к первой цифре, а вместо второй цифры пишем сумму цифр умножаемого числа минус 10.

Например: 29*11 = 2 (2+9) 9 = 2 (11) 9 = 319.
Быстро умножать на 11 устно можно не только двузначные числа, но и любые другие числа.

Например: 324 * 11=3(3+2)(2+4)4=3564

Квадрат суммы, квадрат разности

Для того чтобы возвести в квадрат двузначное число, можно воспользоваться формулами квадрата суммы или квадрата разности. Например:

23²= (20+3)2 = 202 + 2*3*20 + 32 = 400+120+9 = 529

69² = (70-1)2 = 702 – 70*2*1 + 12 = 4 900-140+1 = 4 761

Возведение в квадрат чисел, заканчивающихся на 5.Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу дописываем 25.

25² = (2*(2+1)) 25 = 625

85² = (8*(8+1)) 25 = 7 225

Это верно и для более сложных примеров:

155² = (15*(15+1)) 25 = (15*16)25 = 24 025

Методика умножения чисел до 20 очень проста:

16*18 = (16+8)*10+6*8 = 288

Доказать правильность этого метода просто: 16*18 = (10+6)*(10+8) = 10*10+10*6+10*8+6*8 = 10*(10+6+8) +6*8. Последнее выражение и является демонстрацией описанного выше метода. По сути, этот метод является частным способом использования опорных чисел . В данном случае опорным числом является 10. В последнем выражении доказательства видно, что именно на 10 мы умножаем скобку. Но в качестве опорного числа можно использовать и любые другие числа, из которых наиболее удобными являются 20, 25, 50, 100…

Опорное число

Посмотрите на суть этого метода на примере умножения 15 и 18. Здесь удобно использовать опорное число 10. 15 больше десяти на 5, а 18 больше десяти на 8.

Для того, чтобы узнать их произведение, нужно совершить следующие операции:

15*18

1. К любому из множителей прибавить число, на которое второй множитель больше опорного. То есть прибавить 8 к 15, или 5 к 18. В первом и втором случае получается одно и то же: 23.
2. Затем 23 умножаем на опорное число, то есть на 10. Ответ: 230
3. К 230 прибавляем произведение 5*8. Ответ: 270.

Опорное число при умножении чисел до 100.Наиболее популярной методикой умножения больших чисел в уме является прием использования, так называемого, опорного числа
Опорное число при умножении – это число, к которому близко находятся оба множителя и на которое удобно умножать. При умножении чисел до 100 опорными числами удобно использовать все числа кратные 10, а особенно 10, 20, 50 и 100.
Методика использования опорного числа зависит от того, являются ли множители больше или меньше опорного числа. Тут возможны три случая. Покажем, все 3 методики на примерах.
Оба числа меньше опорного (под опорным). Допустим, мы хотим умножить 48 на 47.
Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа.
Чтобы умножить 48 на 47, используя опорное число 50, нужно:

47*48

1. Из 47 вычесть столько, сколько не хватает 48 до 50, то есть 2. Получается 45 (или
из 48 вычесть 3 – это всегда одно и то же)
2. Дальше 45 умножаем на 50 = 2250
3. Затем прибавляем 2*3 к этому результату – 2 256

Читайте также:  Игры с песком для детей дошкольного возраста: занятия для малышей до 3 лет и детей постарше.

50 (опорное число)

Если числа меньше опорного, то из первого множителя вычитаем разность между опорным числом и вторым множителем. Если числа больше опорного, то к первому множителю прибавляем разность опорного числа и второго множителя .

Одно число под опорным, а другое над.Третий случай использования опорного числа – когда одно число больше опорного, а другое меньше. Такие примеры решаются не сложнее, чем предыдущие. Меньший множитель увеличиваем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей. Или больший множитель уменьшаем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей.

(52-5)*50-5*2=47*50-10=2340 или (45+2)*50-5*2=47*50-10=2340

При умножении двузначных чисел из разных десятков в качестве опорного числа удобнее
брать круглое число , которое больше большего множителя.

27*89

Таким образом, с помощью использования одного опорного числа можно умножать большую комбинацию двузначных чисел. Описанные выше методики можно разделить на универсальные (подходящие для любых чисел) и частные (удобные для конкретных случаев).

В крайнем случае, можно воспользоваться «крестьянским» счетом. Чтобы умножить одно число на другое, допустим 21*75, нам нужно записать числа в две колонки. Первое число левой колонки 21, первое число правого столбика 75. Затем числа стоящие в левой колонке делить на 2 и отбрасывать остаток, пока не получим единицу, а числа в правой колонке умножаем на 2. Все строчки, имеющие четные числа в левой колонке вычеркиваем, а оставшиеся числа в правой колонке складываем, у нас получается точный результат.

21*75

Чтобы научиться быстро считать в уме, нужна практика, нет волшебных методик, чтобы с первого раза начать быстро считать в голове, необходимо постоянно тренировать свой мозг и заставлять его быстро работать и считать.

Заключение

Как и все способы вычислений, данные методы быстрого счета имеют свои достоинства и недостатки:

ПЛЮСЫ:

1.С помощью различных методов быстрых вычислений даже самый малообразованный человек может считать.
2. Способы быстрого счета могут помочь избавиться от сложного действия, путем замены его на несколько более простых.
3.Способы быстрого счета полезны в ситуациях, когда нельзя воспользоваться умножением в столбик.
4.Способы быстрого счета позволяют сократить время вычислений.
5.Устный счет развивает умственную деятельность, что помогает быстрее ориентироваться в сложных жизненных ситуациях.
6. Техника устного счета делает процесс вычислений более увлекательным и интересным.

МИНУСЫ:

1.Зачастую, решать пример, пользуясь способами быстрого счета, оказывается дольше, чем просто перемножать в столбик, так как приходится выполнять большее количество действий, каждое из которых проще первоначального.
2.Бывают ситуации, когда человек от волнения или еще чего-то забывает способы быстрого счета или вовсе — путается в них; в таких случаях ответ получается неправильным, а способы являются фактически бесполезными.
3.Не для всех случаев разработаны способы быстрого счета .
4.Вычисляя с использованием техники быстрого счета, нужно держать множество ответов в голове, в чем можно запутаться и прийти к ошибочному результату.

Несомненно, практика играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые способны считать в уме сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать арифметические операции, которые не каждый человек и в столбик сможет посчитать. Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме.

Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета. Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм. Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете удивить даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

Как научиться быстро считать в уме – способы и техники

Нюансы, которые следует учитывать

Чтобы научиться умножать двузначные числа или складывать дроби, придется потратить достаточно много времени. Однако для более быстрого обучения важно концентрировать внимание на трех основных моментах, без которых время будет потрачено впустую:

  1. Концентрация внимания. Процесс обучения будет куда более эффективным, если математик научится фокусировать свое внимание на той задаче, которую выполняет, ведь очень часто приходится отвлекаться на различные внешние факторы, которые не позволяют быстро посчитать или сложить в уме сложные числа. Чтобы такого не происходило, важно научиться концентрироваться на выполнении лишь одной задачи за один раз. Для этого стоит найти для место, где никто не будет мешать, а также постараться отбросить все мысли о работе, личной жизни, планах на будущее и прочем.
  2. Формулы. Чтобы производить вычисление даже сложных математических уравнений в уме, придется запомнить основные формулы и теоремы, по которым это можно сделать. Само собой, чтобы найти неизвестную переменную, иногда можно использовать и банальный метод подбора, однако такой способ является гораздо более сложным. Поэтому важно выучить всю теоретическую информацию, которую можно будет использовать: формулу дискриминанта, теорему Виета и прочие математические хитрости, с помощью которых процесс счета упрощается в несколько раз.
  3. Практика. Как бы это парадоксально ни звучало, но чтобы освоить технику быстрого счета в уме, необходимо для начала научиться выполнять те же задачи на листке бумаги. Ведь записывая выполнение того или иного упражнения, можно всегда посмотреть, где именно была совершена ошибка в процессе тренировки и сделать кое-какие выводы. Как только арифметик научится легко решать сложные примеры в тетради, самое время переходить на устный счет.

Как только все правила и теоремы будут запомнены, а человек научится не только решать сложные задачи на листке бумаги, но и концентрировать свое внимание, можно приступать к процессу обучения устному счету. Под каждое математическое действие существует свой особый прием и даже несколько тренажеров, позволяющих освоить технику гораздо быстрее.

Вот и польза от интернета

Чтобы научить ребенка считать в уме, можно скачать ему на телефон специальное приложение, в котором есть огромное количество различных примеров, на решение которых дается от 2 до 5 секунд. Само собой, можно попытаться составить уравнения и задачи самому, однако практика показывает, что в большинстве случаев они получаются крайне однообразными и не несут большой пользы. Также существуют специальные сайты, которые позволяют своим посетителям решать уравнение и сложные задачки в режиме онлайн. Используя такие платформы, самое главное — подобрать под себя правильный уровень сложности.

Чтобы система обучения приносила как можно большую пользу, важно понять, что вовсе не обязательно часами сидеть за примерами или пытаться решить сложные задачи сразу в уме. Ментальный счет — это долгий и кропотливый процесс, который не терпит спешки, и чтобы учиться правильно, достаточно уделять примерам от 5 до 10 минут в день. В противном случае голова будет напрягаться, а ученик начнет совершать глупейшие ошибки. Со временем даже такое «микрообучение» приведет к потрясающим результатам. Нужно лишь набраться терпения и практиковаться согласно рекомендациям математиков.

Сложение двузначных и трехзначных чисел

Как в первом классе детей учили быстро складывать и вычитать в уме однозначные числа? Правильно, позволяли для этого использовать пальцы. Ну а умножение и деление были освоены благодаря специальной таблице. Однако большинство взрослых, решивших научиться быстро считать в уме любые числа, как правило, умеют проводить эти действия не только с однозначными, но и с двузначными числами. В этом случае практиковаться будет значительно легче.

Однако если подросток не может сложить два двузначных числа, то сначала придется освоить именно эту методику, ведь от нее все и отталкивается. Как это сделать? Достаточно просто разбить двузначное число на десятки и единицы. То есть если перед учеником стоит пример 65+18, то необходимо каждое число сначала разложить: 65=60+5, 18=10+8. После этого складываем в уме десятки, а уже потом единицы: 60+10=70, 5+18=13. Если в процессе получается еще одно двузначное число, которое будет всегда состоять из одного десятка, то достаточно лишь прибавить сначала его, а уже потом — все имеющиеся единицы: 70+10=80, 80+3=83. Все довольно просто.

Однако когда речь заходит о трехзначных числах, то большинство людей почему-то сразу же входят в ступор, хотя методика здесь практически ничем не отличается от той, которая уже известна. Для начала необходимо разбить основное число на сотни, десятки и единицы, после чего начать складывать их между собой. Вот небольшой пример: 528+376. Действовать нужно по тому же алгоритму, что и ранее:

  • Разбить числа: 528=500+20+8, 376=300+70+6.
  • Сложить сотни: 500+300=800.
  • Сложить десятки: 20+70=90.
  • Сложить единицы 6+8=14.
  • Сплюсовать все, что есть: 800+90+10+4=800+100+4=900+4=904.

Иногда, складывая десятки, также может получаться число больше сотни. Пугаться в этом случае не стоит. Достаточно будет просто прибавить одну сотню к уже имеющимся, после чего проводить арифметические действия с оставшимися десятками. Самое главное — не ошибиться в процессе.

Особенности вычитания

В математике существует всего два «полноправных» действия — сложение и умножение. Вычитание и деление являются обратными от этих двух. Кроме того, их всегда можно заменить умножением, подставив число «x», или сложением, подставив знак минус к неизвестному слагаемому. Именно поэтому, чтобы научиться вычитанию, сперва необходимо научиться складывать числа. Ведь в любой момент можно просто поменять в уме переменные и проверить правильность решения с помощью «x». Методика вычитания трехзначных чисел практически ничем не отличается от сложения. Вот небольшой пример: 553−192, а также подробный разбор:

  • Разбить имеющиеся числа на сотни, десятки и единицы: 500=500+50+3, 192=100+90+2.
  • Провести вычитание с сотнями: 500−100=400.
  • Вычесть десятки, заняв одну сотню: 150−90=60.
  • Вычесть единицы: 3−2=1.
  • Сложить остатки, не забыв о заемных сотнях или десятках: «300+60+1=361».

То есть даже в вычитании будет обязательно присутствовать сложение. Основная сложность расчета таких примеров заключается в постоянной необходимости занимать десятки. Однако если проводить такую тренировку ежедневно, то со временем считать трехзначные числа будет ненамного сложнее, чем двухзначные. Самое главное — верить в себя и собственные силы.

Секреты умножения

Вот человеку нужно посчитать, находясь возле кассы, сколько же будет стоить 4 килограмма клубники по 183 рубля. Для этого он вытаскивает из кармана телефон и долго ищет в меню калькулятор. Однако куда быстрее будет посчитать все в уме. Самое главное — знать методику, которая позволяет это делать максимально правильно, а также как можно больше практиковаться. Алгоритм действий выглядит следующим образом.

  • Разложить основное число, как и в случае с умножением: 183=100+80+3.
  • Умножить число 4 на каждое имеющееся слагаемое: 100*4=400, 80*4=8*4*10=32*10=320, 3*4=12.
  • Сложить все имеющиеся числа: 400+320+12=700+32=732.

Ничего сложного в этом нет, не говоря уже о том, что в умножении существует довольно много приемов, позволяющих провести операцию гораздо быстрее. К примеру, если человеку необходимо умножить какое-то число на 25, то достаточно просто разделить его на 4, после чего умножить на 100. Вот небольшой пример: 400*25=400/4*100=100*100=10000. Почему именно 4 и 100? Просто число 25 было замещено десятичной дробью ¼, ведь 25 — это 1 часть из 4 у сотни. Так что подобным приемом можно пользоваться, если необходимо быстро умножить что-то на «четвертак».

Сложности деления

Деление — самое сложное арифметическое действие, которое крайне трудно совершать в уме. Однако существует одна методика, которая является практически беспроигрышной. Как уже говорилось ранее, деление не является самостоятельным действием, поскольку оно обратное от умножения. Ведь что такое 32:8? Правильно: «x*8=32». Ну а по таблице умножения всем хорошо известно, что вместо переменной необходимо поставить число 4. Таким приемом можно пользоваться и для того, чтобы научиться быстро считать в уме.

Взрослому человеку это не составит большого труда, а вот ребенку придется сперва познакомиться с тем, что такое неизвестные переменные и как их искать.

Если человек научился проводить умножение с трехзначными числами в уме, то ему не составит особого труда для того, чтобы разделить эти числа. Вот небольшой пример: 795:3. Казалось бы, что посчитать его крайне трудно, но, чтобы упростить задачу, можно разбить его на множители, а также ввести переменные:

  • Разбить число 795 на слагаемые, с которыми легко провести деление: «795=600+195».
  • Поделить число 600 на 3 и держим в уме ответ: 200.
  • Разделить число 195 на 3, но здесь необходимо также разделить его на слагаемые: 195=150+45.
  • Поделить крупное число на 3: 150_3=50 и прибавляем ответ к имеющемуся: 200+50=250.
  • Не зная таблицы деления, ввести переменную «x» для оставшегося числа 45=x*3. Получается, что x=15.
  • Сложить остатки и проверить ответ умножением: 250+15=265, 265*3=200*3+60*3+5*3=795″ — все сходится.

Таким образом, чтобы облегчить процесс деления, можно воспользоваться не только методом разложения числа на слагаемые, но и вводя новую переменную. Особенно полезным этот навык окажется для того, кто проводит математические действия с более интересным и сложными примерами. Несколько месяцев практики обязательно принесут плоды, но следует взять себе за привычку проверять решение не с помощью калькулятора, а умножения.

Высчитывание процентов

Многие люди впадают в ступор, когда их просят найди 6 процентов от 253. Однако если знать основные математические правила, то в этом нет абсолютно ничего сложного. Причем, чтобы научиться проводить все действия в уме, не потребуется нескольких лет практики. Достаточно лишь следовать определенному алгоритму действий:

  • Найти 1% от имеющегося числа. Для этого его необходимо разделить на 100: «253:100=2,53».
  • Разложить получившиеся число на слагаемые, которые будет легко умножить на 6: 2,53=2+0,5+0,03.
  • Провести умножение: 2*6=12, 0,5*6=½*6=3, 0,03*6=0,18.
  • Сложить получившиеся значения: 12+3+0,18=15+0,18=15,18.

Чтобы научиться считать числа в уме, вовсе не обязательно быть вундеркиндом или потратить годы практики. Достаточно просто знать основные правила и формулы, которые позволяют упростить те или иные действия, а также уметь грамотно заменить некоторые переменные. Ну и, пожалуй, важнее всего — концентрироваться на выполнении определенной задачи. Если решать такие примеры каждый день, то со временем от калькулятора можно будет отказаться вовсе, что очень удобно, ведь даже в век информационных технологий полностью положиться на машины нельзя.

Читайте также:  Папка для первых документов ребёнка из ткани - мастер-класс

Методика быстрого счета в уме без калькулятора

Цифры окружают нас с детства. Еще до школы или в первом классе человек учится складывать и вычитать, решать простые примеры и задачи. Позже он осваивает таблицу умножения, переходя к более сложной части математических упражнений. Большинство людей может производить в уме только простые вычисления. А вот умножение и деление больших значений приходится выполнять на бумаге или с помощью калькулятора. Но можно ли как-то научиться хорошо считать без использования подручных средств?

Быстрый счет без калькулятора

Жизнь любого современного человека неотрывно связана с числами. Без умения считать невозможно выполнять самые простые повседневные задачи. Конечно, сегодня у людей появились умные помощники – калькуляторы, смартфоны, компьютеры, но даже они могут иногда подвести – сломаться или не вовремя разрядиться. Да и не всегда можно полагаться на гаджеты, ведь на экзаменах в школе или в ВУЗе они не помогут. Именно поэтому многие люди стремятся научиться хорошо считать без помощи подручных средств. Особенно это актуально для школьников, ведь если с детства освоить техники быстрого устного счета, то и учеба в школе, и различные задачи во взрослой жизни будут даваться легче.

Есть еще одна серьезная причина для того, чтобы начать тренироваться хорошо считать в уме. Устный счет развивает человеческий мозг и способствует росту уровня интеллекта. Поэтому даже те студенты, которые обучаются на гуманитарных специальностях, все равно изучают такие точные науки, как высшая математика и математический анализ. Упражнения, направленные на устный счет больших чисел, являются отличной зарядкой для ума. Так развитие интеллекта и удобство в быту – это две самые главные причины научиться хорошо считать без калькулятора.

Человечество еще с древности стремилось найти такие способы быстрого счета. И речь не только о простых вычислениях, таких как сложение и вычитание, но и о более сложных – об умножении и делении. Пусть это и занимает много времени, но складывать и вычитать большие значения все же можно без предварительной подготовки, а вот такие действия, как умножение двузначных чисел, недоступны большинству людей.

Но, благодаря труду математиков со всего земного шара, сегодня появились некоторые математические хитрости, позволяющие считать в уме не только однозначные, но и двузначные числа. Чтобы понять принцип их работы, лучше рассмотреть каждый из этих приемов отдельно.

Популярная система быстрого счета

Существует несколько видов основных математических операций – сложение, вычитание, умножение и деление. И если с нахождением суммы и разности все более или менее понятно, то другие вычисления производить намного сложнее. Рассмотрим самые популярные математические хитрости, направленные на удобное умножение и деление в уме.

Умножение любого числа на 9

Решать устно такие примеры очень легко. Для этого достаточно умножить нужное значение на 10 и вычесть из получившегося ответа это же число. Например, нам нужно найти результат умножения 19 и 9. Пример будет выглядеть так: 19*10-19= 190-19=171. Этот прием достаточно легко применять на практике.

Умножение любого числа на 11

Похожим образом выглядит умножение любого значения на 11: мы находим произведение нашего числа и 10, а затем прибавляем к получившемуся выражению наше число. Допустим, мы ищем сколько будет 67*11, так у нас получается следующий пример: 67*10+67=670+67=737.

Умножение двузначного числа на однозначное

Проще всего производить такую операцию методом разбора множителей на десятки и единицы. Допустим, нам требуется перемножить 56 и 8. Для этого мы разделяем 56 на составные части, получается 50 и 6. Теперь мы отдельно перемножаем наши десятки и единицы на однозначное число и ищем их сумму. Получается 50*8+6*8=400+48=448. Но чем больше знаков в каждом из перемножаемых значений, тем сложнее производить подобные операции в уме.

Умножение двузначного числа на двузначное

Нахождение результата умножения двузначных чисел похоже на предыдущий метод. К примеру, необходимо найти произведение 24 и 52. Для этого мы разбиваем одно из чисел на десятки и единицы и перемножаем их на наш множитель, а затем складываем полученные выражения: 20*52+4*52=1040+208=1248. Чем больше каждое из чисел, тем сложнее находить результат умножения.

Нахождение процента от числа

Чтобы найти процент от любого значения, нужно умножить данное число на размер искомого процента и разделить на сто. Лучше рассмотреть данный подход на примере. Допустим, требуется найти 12% от 74. Мы производим умножение 12 и 74, разбирая это выражение на составные части. Получается 10*74+2*74=740+148=888. Теперь мы делим наш результат на 100 и получаем ответ – 8,88%. Так удается легко находить процент от любого значения без помощи калькулятора.

Деление многозначного числа на однозначное

Чтобы найти ответ на такой пример, нужно вспомнить таблицу умножения. Допустим, нам требуется разделить число 138 на 6. Для этого мы разбиваем делимое на части, получается 13 десятков и 8 единиц. Делим 13 на 6, получаем 2 и 1 в остатке. Это значит, что десятком в нашем ответе будет число 2. Остаток, а это 1 десяток, мы складываем с единицей делимого, получается 18. Делим 18 на 6, получается 3. Теперь складываем получившиеся десятки и единицы: 20+3=23. Целое выражение будет выглядеть так: 120/6+(10+8)/6=20+18/6=23.

Существуют и другие, более сложные приемы устных математических вычислений, которые позволяют выполнять операции с многозначными числами. Но и освоить эти техники труднее, так как они требуют высокой концентрации и хорошо развитой памяти.

К плюсам всех подобных приемов можно отнести уже то, что такому счету можно научиться достаточно быстро. Перечисленные способы имеют множество вариаций от простых до более сложных, поэтому некоторые из них охотно используют даже дети. Но все эти методы имеют один существенный недостаток, который не позволяет им называться полноценной системой счета в уме.

Такие способы вычислений подразумевают соблюдение целого ряда условий. Например, правила для умножения трехзначных чисел отличаются от правил для двузначных. Поэтому приходится запоминать большое количество условий, чтобы можно было применять в быту такие способы счета. Все это делает подобные методы сложения, вычитания, умножения и деления скорее зарядкой для ума, чем продуктивным подходом к вычислениям.

Но существуют и кардинально иные техники, позволяющие развить навыки человека и научиться очень хорошо считать без подручных средств. Одной из самых популярных методик быстрого устного счета является ментальная арифметика. Рассмотрим ее преимущества подробнее.

Как научить ребенка считать в уме

Ментальная арифметика – это далеко не новая система быстрого счета, ведь она зародилась еще в древности, около пяти тысяч лет назад. С тех пор данная методика не претерпела серьезных изменений и дошла до нас в практически первозданном виде. В ее основе лежат вычисления на абакусе – специальных счётах. Сначала человек учится решать простейшие примеры на них, а затем постепенно переходит к более сложному этапу обучения – учится представлять абакус в уме и производить вычисления на нем в своем воображении.

Лучше всего ментальная арифметика подходит именно детям. Нет, взрослые также могут ее освоить, но для этого им придется абстрагироваться от привычных методов операций с числами, а ребенок справляется с этим намного легче. Для него ментальная арифметика является не только помощником на уроках математики, но и способом развить свои интеллектуальные способности до очень высокого уровня.

Весь секрет этой методики в том, что она подразумевает разностороннее развитие человека. За логику и анализ отвечает правое полушарие мозга, именно оно задействуется на обычных уроках математики, когда мы решаем примеры или задачи. Правое полушарие, отвечающее за креативное мышление и фантазию, в этом случае к работе почти не подключается, а значит и не развивается должным образом. А ведь все области человеческого интеллекта необходимо тренировать.

Так как ментальная арифметика задействует и аналитическое мышление, и воображение, она является даже не столько способом быстро решать математические задачи, сколько средством для всестороннего развития. Другие методики чаще всего направлены на тренировку какой-то одной способности, а данная техника работает комплексно. Именно это выделяет ее среди прочих и делает одной из самых популярных систем развития интеллекта ребенка.

Обучение ментальной арифметике занимает достаточно много времени, но те преимущества, которые она дает, оправдывают затраченные усилия. Когда речь идет об обучении ребенка по данной методике, важно подобрать правильную программу тренировок. Ключевым фактором успеха является соблюдение плана занятий и контроль их регулярности. Несмотря на то, что в открытых источниках в интернете можно найти много информации по этому запросу, не всегда удается самостоятельно освоить ментальную арифметику. Поэтому большинство родителей предпочитают обучать ребенка этой технике в детских центрах дополнительного образования.

Как выбрать эффективную методику

Сегодня многие учебные заведения предлагают пройти курсы ментальной арифметики. Но детское образование – это очень сложный и многогранный процесс, поэтому родители должны походить к нему внимательно, и выбирать такие занятия, которые точно принесут пользу.

Выбирая школу ментальной арифметики, обращайте внимание на то, чтобы обучение велось по проверенной методике и учитывало возрастные особенности каждого ребенка. Нельзя, чтобы в одной группе обучались дети из начальной школы и старшеклассники, ведь в каждом возрасте своя скорость освоения, запоминания и закрепления материала.

К тому же, маленьким детям лучше всего преподавать любой предмет в игровой форме. Так они не будут уставать учиться и смогут сохранять концентрацию в течение всего урока. Внедрение игры в образовательный процесс способствует повышению интереса ребенка к математике.

Очень важно, чтобы тренер успевал уделить внимание каждому ученику в процессе занятия, но это возможно только в небольших группах. Поэтому стоит отдавать предпочтение тем детским центрам, где педагог обучает не более десяти детей единовременно. Только тогда удастся заниматься с максимальной продуктивностью.

Если учебный план организован правильно, то ребенку удастся приобрести полезные навыки, благодаря которым математика станет для него интересным и любимым предметом. Все это положительно скажется на успеваемости в школе, ведь, когда учеба дается легко, заниматься намного веселее.

Все это делает обучение ментальной арифметике самым продуктивным способом освоения быстрого устного счета.Ребенку больше не придется прибегать к различным математическим хитростям, чтобы легко справляться с задачами и примерами. Ученик приобретает навыки, которые сохраняются на всю жизнь, а значит они пригодятся ему не только в учебе, но и в карьерной деятельности. Все это делает обучение данной технике отличным вкладом в будущее своего ребенка.

Эффективный счёт в уме или разминка для мозга

Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.
Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно. Для его учеников не было особой проблемой посчитать подобный пример в уме:

Используем круглые числа

Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:

Т.к. на 10, 100, 1000 и др. круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.
Еще пример:

Упростим умножение делением

При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):

Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4. Например,

Теперь не кажется невозможным умножить в уме 625 на 53:

Возведение в квадрат двузначного числа

Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения. Остальные квадраты можно посмотреть в нижеприведённой таблице:

Приём Рачинского заключается в следующем. Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,

В общем случае (M — двузначное число):

Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые:

Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться.
И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.

Умножение двузначных чисел

Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.
Пусть даны два двузначных числа, у которых сумма единиц равна 10:

Составив их произведение, получим:

Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к. 7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.
Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:

У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.
48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,
99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит,
Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:

Тогда предыдущий пример можно вычислить немного проще:

Вместо заключения

Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать голосовую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.

Использованная литература:
«1001 задача для умственного счёта в школе С.А. Рачинского».

Добавить комментарий