BioTech: история развития и самые удачные продукты

История развития биотехнологии

Реферат

«История развития биотехнологии»

Выполнила: Скобкарева Е.В.

Проверил: Березкина Г.Ю.

2.История развития биотехнологии………………………………..……….6

3.Биосистемы, объекты и методы в биотехнологии……………………. 11

Общие положения

Определение биотехнологии в довольно полном объеме дано Ев­ропейской биотехнологической федерацией, основанной в 1978 г. По этому определению биотехнология – это наука, которая на основе применения знаний в области микробиологии, биохимии, генетики, генной инженерии, иммунологии, химической технологии, приборо- и машиностроения использует биологические объекты (микро­организмы, клетки тканей животных и растений) или молекулы (нук­леиновые кислоты, белки, ферменты, углеводы и др.) для промыш­ленного производства полезных для человека и животных веществ и продуктов.

До тех пор, пока всеобъемлющий термин «биотехнология» не стал общепринятым, для обозначения наиболее тесно связанных с биоло­гией разнообразных технологий использовали такие названия, как прикладная микробиология, прикладная биохимия, технология фер­ментов, биоинженерия, прикладная генетика и прикладная биоло­гия.

Использование научных достижений в биотехнологии осуществ­ляется на самом высоком уровне современной науки. Только биотех­нология создает возможность получения разнообразных веществ и соединений из сравнительно дешевых, доступных и возобновляе­мых материалов.

В отличие от природных веществ и соединений, искусственно син­тезируемые требуют больших капиталовложений, плохо усваивают­ся организмами животных и человека, имеют высокую стоимость.

Биотехнология использует микроорганизмы и вирусы, которые в процессе своей жизнедеятельности вырабатывают естественным пу­тем необходимые нам вещества – витамины, ферменты, аминокис­лоты, органические кислоты, спирты, антибиотики и др. биологи­чески активные соединения.

Живая клетка по своей организационной структуре, слаженности процессов, точности результатов, экономичности и рациональности превосходит любой завод.

В настоящее время микроорганизмы используются, в основном, в трех видах биотехнологических процессов:

– для производства биомассы;

– для получения продуктов метаболизма (например, этанола, ан­тибиотиков, органических кислот и др.);

– для переработки органических и неорганических соединений как природного, так и антропогенного происхождения.

Главная задача первого вида процессов, которую сегодня призва­но решать биотехнологическое производство – ликвидация белково­го дефицита в кормах сельскохозяйственных животных и птиц, т.к. в белках растительного происхождения имеется дефицит аминокис­лот и, прежде всего, особо ценных, так называемых незаменимых.

Основным направлением второй группы биотехнологических про­цессов в настоящее время является получение продуктов микробно­го синтеза с использованием отходов различных производств, вклю­чая пищевую, нефте- и деревоперерабатывающую промышленности и т.д.

Биотехнологическая переработка различных химических соеди­нений направлена, главным образом, на обеспечение экологического равновесия в природе, переработку отходов деятельности человече­ства и максимальное снижение негативного антропогенного воздей­ствия на природу.

В промышленном масштабе биотехнология представляет индуст­рию, в которой можно выделить следующие отрасли:

– производство полимеров и сырья для текстильной промышлен­ности;

– получение метанола, этанола, биогаза, водорода и использова­ние их в энергетике и химической промышленности;

– производство белка, аминокислот, витаминов, ферментов и т.д. путем крупномасштабного выращивания дрожжей, водорослей, бак­терий;

– увеличение продуктивности сельскохозяйственных растений и животных;

– получение гербицидов и биоинсектицидов;

– широкое внедрение методов генной инженерии при получении новых пород животных, сортов растений и выращивания тканевых клеточных культур растительного и животного происхождения;

– переработка производственных и хозяйственных отходов, сточ­ных вод, изготовление компостов с применением микроорганизмов;

– утилизация вредных выбросов нефти, химикатов, загрязняющих почву и воду;

– производство лечебно-профилактических и диагностических пре­паратов (вакцин, сывороток, антигенов, аллергенов, интерферонов, антибиотиков и др.).

Практически все биотехнологические процессы тесно связаны с жизнедеятельностью различных групп микроорганизмов – бактерий, вирусов, дрожжей, микроскопических грибов и т.п., и имеют ряд ха­рактерных особенностей:

1. Процесс микробного синтеза, как правило, является частью мно­гостадийного производства, причем целевой продукт стадии биосин­теза часто не является товарным и подлежит дальнейшей переработ­ке.

2. При культивировании микроорганизмов обычно необходимо под­держивать асептические условия, что требует стерилизации оборудо­вания, коммуникаций, сырья и др.

3. Культивирование микроорганизмов осуществляют в гетероген­ных системах, физико-химические свойства которых в ходе процесса могут существенно изменяться.

4. Технологический процесс характеризуется высокой вариабель­ностью из-за наличия в системе биологического объекта, т.е. популя­ции микроорганизмов.

5. Сложность и многофакторность механизмов регуляции роста микроорганизмов и биосинтеза продуктов метаболизма.

6. Сложность и в большинстве случаев отсутствие информации о качественном и количественном составе производственных питатель­ных сред.

7. Относительно низкие концентрации целевых продуктов.

8. Способность процесса к саморегулированию.

9. Условия, оптимальные для роста микроорганизмов и для био­синтеза целевых продуктов, не всегда совпадают.

Микроорганизмы потребляют из окружающей среды вещества, растут, размножаются, выделяют жидкие и газообразные продукты метаболизма, тем самым реализуя те изменения в системе (накопле­ние биомассы или продуктов метаболизма, потребление загрязняю­щих веществ), ради которых проводят процесс культивирования. Сле­довательно, микроорганизм можно рассматривать как центральный элемент биотехнологической системы, определяющий эффективность ее функционирования.

История развития биотехнологии

За последние 20 лет биотехнология, благодаря своим специфичес­ким преимуществам перед другими науками, совершила решитель­ный прорыв на промышленный уровень, что в немалой степени обя­зано также развитию новых методов исследований и интенсифика­ции процессов, открывших ранее неизвестные возможности в полу­чении биопрепаратов, способов выделения, идентификации и очист­ки биологически активных веществ.

Биотехнология формировалась и эволюционировала по мере фор­мирования и развития человеческого общества. Ее возникновение, становление и развитие условно можно подразделить на 4 периода.

1. Эмпирический период или до­исторический – самый длительный, охватывающий примерно 8000 лет, из которых более 6000 лет до н.э. и около 2000 лет н.э. Древние народы того времени интуитивно использовали приемы и способы изготовления хлеба, пива и некоторых других продуктов, которые теперь мы относим к разряду биотехнологических.

Известно, что шумеры – первые жители Месопотамии (на терри­тории современного Ирака) создали цветущую в те времена цивили­зацию. Они выпекали хлеб из кислого теста, владели искусством го­товить пиво. Приобретенный опыт передавался из поколения в поко­ление, распространялся среди соседних народов (ассирийцев, вави­лонян, египтян и древние индусов). В течение нескольких тысячеле­тий известен уксус, издревле приготавливавшийся в домашних усло­виях. Первая дистилляция в виноделии осуществлена в XII в.; водку из хлебных злаков впервые получили в XVI в.; шампанское известно с XVIII в.

К эмпирическому периоду относятся получение кисломолочных продуктов, квашеной капусты, медовых алкогольных напитков, си­лосование кормов.

Таким образом, народы исстари пользовались на практике био­технологическими процессами, ничего не зная о микроорганизмах. Эмпиризм также был характерен и в практике использования полез­ных растений и животных.

В 1796 г. произошло важнейшее событие в биологии – Э. Дженнером были проведены первые в истории прививки человеку коровьей оспы.

2. Этиологический период в развитии биотехнологии охватывает вторую половину XIX в. и первую треть XX в. (1856 – 1933 гг.). Он связан с выдающимися исследованиями великого французского ученого Л. Пастера (1822 – 95) – основопо­ложника научной микробиологии.

Пастер установил микробную природу брожения, доказал возмож­ность жизни в бескислородных условиях, создал научные основы вакцинопрофилактики и др.

В этот же период творили его выдающиеся ученики, сотрудники и коллеги: Э. Дюкло, Э. Ру, Ш.Э. Шамберлан, И.И. Мечников; Р. Кох, Д. Листер, Г. Риккетс, Д. Ивановский и др.

В 1859 г. Л. Пастер приготовил жидкую питательную среду, Р. Кох в 1881 г. предложил метод культивирования бактерий на стерильных ломтиках картофеля и на агаризованных питательных средах. И, как следствие этого, удалось доказать индивидуальность микробов и получить их в чистых культурах. Более того, каждый вид мог быть размножен на питательных средах и использован в целях воспроиз­ведения соответствующих процессов (бродильных, окислительных и др.).

Среди достижений 2-й периода особо стоит отметить следующие:

– 1856 – чешский монах Г. Мендель открыл законы доминирова­ния признаков и ввел понятие единицы наследственности в виде дис­кретного фактора, который передается от родителей потомкам;

– 1869 – Ф. Милер выделил «нуклеин» (ДНК) из лейкоцитов;

– 1883 – И. Мечников разработал теорию клеточного иммунитета;

– 1984 – Ф. Леффлер изолировал и культивировал возбудителя дифтерии;

– 1892 – Д.Ивановский открыл вирусы;

– 1893 – В. Оствальд установил каталитическую функцию ферментов;

– 1902 – Г. Хаберланд показал возможность культивирования кле­ток растений в питательных растворах;

– 1912 – Ц. Нейберг раскрыл механизм процессов брожения;

-1913 – Л. Михаэлис и М. Ментен разработали кинетику фермен­тативных реакций;

– 1926 – X. Морган сформулировал хромосомную теорию наслед­ственности;

– 1928 – Ф. Гриффит описал явление «трансформации» у бакте­рий;

– 1932 – М. Кнолль и Э. Руска изобрели электронный микроскоп.
В этот период было начато изготовление прессованных пищевых

дрожжей, а также продуктов их метаболизма – ацетона, бутанола, лимонной и молочной кислот, во Франции приступили к созданию биоустановок для микробиологической очистки сточных вод.

Тем не менее, накопление большой массы клеток одного возраста оставалось исключительно трудоемким процессом. Вот почему тре­бовался принципиально иной подход для решения многих задач в области биотехнологии.

3. Биотехнический период – начался в 1933 г. и длился до 1972 г.

В 1933 г. А. Клюйвер и А.Х. Перкин опубликовали работу «Мето­ды изучения обмена веществ у плесневых грибов», в которой изло­жили основные технические приемы, а также подходы к оценке по­лучаемых результатов при глубинном культивировании грибов. Началось внедрение в биотехнологию крупномасштабного герметизи­рованного оборудования, обеспечивающего проведение процессов в стерильных условиях.

Особенно мощный толчок в развитии промышленного биотехно­логического оборудования был отмечен в период становления и раз­вития производства антибиотиков (время второй мировой войны 1939-1945 гг., когда возникла острая необходимость в противомикробных препаратах для лечения больных с инфицированными ранами).

Все прогрессивное в области биотехнологических и технических дисциплин, достигнутое к тому времени, нашло свое отражение в биотехнологии:

– 1936 – были решены основные задачи по конструированию, со­зданию и внедрению в практику необходимого оборудования, в том числе главного из них – биореактора (ферментера, аппарата-культи­ватора);

– 1938 – А. Тизелиус разработал теорию электрофореза;

– 1942 – М. Дельбрюк и Т. Андерсон впервые увидели вирусы с помощью электронного микроскопа;

– 1943 – пенициллин произведен в промышленных масштабах;

– 1949 – Дж. Ледерберг открыл процесс конъюгации у Е.colly;

– 1950 – Ж. Моно разработал теоретические основы непрерывно­го управляемого культивирования микробов, которые развили в сво­их исследованиях М. Стефенсон, И. Молек, М. Иерусалимский,
И. Работнова, И. Помозгова, И. Баснакьян, В. Бирюков;

-1951 – М. Тейлер разработал вакцину против желтой лихорадки;

– 1952 – У. Хейс описал плазмиду как внехромосомный фактор наследственности;

-1953 – Ф. Крик и Дж. Уотсон расшифровали структуру ДНК. Это стало побудительным мотивом для разработки способов крупномас­штабного культивирования клеток различного происхождения для получения клеточных продуктов и самих клеток;

– 1959 – японские ученые открыли плазмиды антибиотикоустойчивости (К-фактор) у дизентерийной бактерии;

– 1960 – С. Очоа и А. Корнберг выделили белки, которые могут «сшивать» или «склеивать» нуклеотиды в полимерные цепочки, син­тезируя тем самым макромолекулы ДНК. Один из таких ферментов был выделен из кишечной палочки и назван ДНК-полимераза;

– 1961 – М. Ниренберг прочитал первые три буквы генетического
кода для аминокислоты фенилаланина;

– 1962 – X. Корана синтезировал химическим способом функцио­нальный ген;

-1969 – М. Беквит и С. Шапиро выделили ген 1ас-оперона у Е.colly;

– 1970 – выделен фермент рестриктаза (рестриктирующая эндонуклеаза).

4. Геннотехнический период начался с 1972 г., когда П. Берг создал первую рекомбинацию молекулы ДНК, тем самым показав возмож­ность направленных манипуляцией с генетическим материалом бак­терий.

Естественно, что без фундаментальной работы Ф. Крика и Дж. Уотсона по установлению структуры ДНК было бы невозможно дос­тигнуть современных результатов в области биотехнологии. Выяс­нение механизмов функционирования и репликации ДНК, выделе­ние и изучение специфичных ферментов привело к формированию строго научного подхода к разработке биотехнических процессов на основе генноинженерных манипуляций.

Создание новых методов исследований явилось необходимой пред­посылкой развития биотехнологии в 4-ом периоде:

– 1975 – Г. Келлер и Ц. Мильштейн опубликовали в журнале «Ка1иге» статью «Длительноживущие культуры гибридных клеток, секретирующие антитела предопределенной «специфичности», в которой описали метод получения моноклональных антител;

– 1977 – М. Максам и У. Гилберт разработали метод анализа пер­вичной структуры ДНК путем химической деградации, а Дж. Сэнгер
– путем полимеразного копирования с использованием терминиру­ющих аналогов нуклеотидов;

– 1981 – разрешен к применению в США первый диагностичес­кий набор моноклональных антител;

1982 – поступил в продажу человеческий инсулин, продуцируе­мый клетками кишечной палочки; разрешена к применению в Евро­пейских странах вакцина для животных, полученная по технологии
рекомбинантных ДНК; разработаны генно-инженерные интерфероны, фактор некротизации опухоли, интер-лейкин-2, соматотропный гормон человека и др;

-1986 – К. Мюллис разработал метод полимеразной цепной реак­ции (ПЦР);

– 1988 – началось широкомасштабное производство оборудова­ния и диагностических наборов для ПЦР;

– 1997 – клонировано первое млекопитающее (овечка Долли) из дифференцированной соматической клетки.

Такие выдающиеся отечественные ученые как Л.С. Ценковский, С.Н. Вышелесский, М.В. Лихачев, Н.Н. Гинзбург, С.Г. Колесов, Я.Р. Коляков, Р.В. Петров, В.В. Кафаров и др. внесли неоценимый вклад в развитие биотехнологии.

Наиболее важные достижения биотехнологии в 4-ом периоде:

1. Разработка интенсивных процессов (вместо экстенсивных) на основе направленных, фундаментальных исследований (с продуцен­тами антибиотиков, ферментов, аминокислот, витаминов).

2. Получение суперпродуцентов.

3. Создание различных продуктов, необходимых человеку, на ос­нове генноинженерных технологий.

4. Создание необычных организмов, ранее не существовавших в природе.

5. Разработка и внедрение в практику специальной аппаратуры биотехнологических систем.

6. Автоматизация и компьютеризация биотехнологических про­изводственных процессов при максимальном использовании сырья и минимальном потреблении энергии.

Вышеперечисленные достижения биотехнологии реализуются в настоящее время в народное хозяйство и будут внедряться в практи­ку в последующие 10-15 лет. В обозримом будущем будут опреде­лены новые краеугольные камни биотехнологии и нас ждут новые открытия и достижения.

Пищевая биотехнология, ее современное состояние

Значение пищевой биотехнологии в современном мире

Пищевая биотехнология является новым и перспективным направлением в перерабатывающей промышленности (мясная, молочная, рыбная и др.). Пищевая биотехнология изучает биотехнологический потенциал сырья животного происхождения и пищевых добавок, в качестве которых используются новые ферментные препараты. продукты микробиологического синтеза, новые виды биологически активных веществ и много компонентные добавки.

Биотехнология используется для изготовления продуктов питания уже на протяжении более 8000 лет. Наличию на полках магазинов и в холодильнике хлеба, алкогольных напитков, уксуса, сыра, йогурта и многого другого мы обязаны ферментам, вырабатываемым различными микроорганизмами. Современная биотехнология постоянно оказывает влияние на пищевую промышленность посредством создания новых продуктов, а также снижения себестоимости и усовершенствования бактериальных процессов, с незапамятных времен используемых в производстве продуктов питания.

Биотехнология позволяет улучшить качество, питательную ценность и безопасность как сельскохозяйственных культур, так и продуктов животного происхождения. составляющих основу используемого пищевой промышленностью сырья.

Кроме того, биотехнология предоставляет массу возможностей усовершенствования методов переработки сырья в конечные продукты и повышения качества самой продукции. Сюда относятся натуральные ароматизаторы и красители: новые технологические добавки, в том числе ферменты и эмульгаторы: заквасочные культуры: новые средства для утилизации отходов: экологически чистые производственные процессы: новые средства для обеспечения сохранения безопасности продуктов в процессе изготовления; биоразрушающаяся пластиковая упаковка, уничтожаемая бактериями.

ПИЩЕВЫЕ И ТЕХНОЛОГИЧЕСКИЕ ДОБАВКИ

Микроорганизмы важны для пищевой промышленности не только благодаря своей способности к ферментации Продуктов, но и как источники пищевых и технологических добавок. Судя по всему, развитие биотехнологии будет продолжать способствовать дальнейшему повышению важности бактерий для пищевой промышленности.

Читайте также:  Почему предтренировочные комплексы мешают набору массы?

Пищевые добавки используются для повышения питательной ценности, удлинения срока хранения, изменения консистенции и усиления вкуса и аромата продуктов. Используемые производителями пищевые добавки, как правило, имеют растительное или бактериальное происхождение: например, синтезируемые бактериями ксантановая и гуаровая смолы. Многие аминокислотные добавки, усилители вкуса и витамины, добавляемые в пищевые продукты, производятся с помощью бактериальной ферментации. Со временем биотехнология должна обеспечить производителям пищевых продуктов возможность синтеза большого количества пищевых добавок, которые в настоящее время слишком дороги либо малодоступны из-за ограниченности природных источников этих соединений.

Производители продуктов питания используют растительный крахмал в качестве загустителя и заменителя жира в низкокалорийных продуктах. В настоящее время крахмал получают из растительного сырья и модифицируют с помощью химических реагентов или энергоемких механических процессов. Биотехнология позволяет изменить характеристики растительного крахмала и таким образом избежать необходимости его Промышленной обработки.

Ферменты, получаемые с помощью микробной ферментации, играют для пищевой Промышленности важную роль в качестве технологических добавок. Первым коммерческим биотехнологическим продуктом был фермент Химозин, используемый в сыроварении. До внедрения биотехнологических методик этот фермент приходилось извлекать из желудков телят, ягнят или козлят, а сегодня он синтезируется бактериями, в геном которых встроен соответствующий ген.

Для производства обогащенного фруктозой кукурузного сиропа требуется три фермента, которые важны также для изготовления выпечки и пива. Для производства фруктовых соков, некоторых сортов конфет и сыров также необходимы ферменты. На сегодняшний день в пищевой Промышленности используется уже более 55 различных ферментов микробного происхождения. По мере изучения весьма впечатляющего разнообразия бактериального мира эта цифра будет продолжать увеличиваться.

ПОЛУЧЕНИЕ БЕЛКОВЫХ ПИЩЕВЫХ ПРОДУКТОВ

Пищевые белковые продукты (микробный белок, смеси аминокислот и низкомолекулярных белковых продуктов), содержащие белковые вещества в высоких концентрациях, получают из биомассы микроорганизмов с применением ферментативной обработки и химического разделения ферментолизатов. В качестве продуцентов микробного белка используют культуры дрожжей (родов Candida, Endomycopsis), несовершенных грибов (Penicillium, Trichoderma) и базидиомицетов.

Применение необработанной биомассы дрожжей для пищевых целей ограничено высоким содержанием нуклеиновых кислот (6-12). В биомассе некоторых видов дрожжей находят п-линоленовую кислоту в количестве 11-28 от суммы жирных кислот. В организме животных п-линоленовая кислота ингибирует метаболизм у-линоленовой кислоты — предшественника арахидоновой кислоты, участвующей в регуляции ряда физиологических функций.

В мицелии несовершенных грибов уровень содержания сырого протеина достигает 55-57. в мицелии базидиомицетов — 42.5-48.5. Грибной белок хорошо усваивается. Так. степень усвояемости белка Fusarium culmorum составляет 84. а биологическая ценность по отношению к казеину — 50-70.

Грибной белок имеет хорошие структурные свойства, что важно при использовании его в пищевых продуктах, кулинарных изделиях. Белковые концентраты из биомассы несовершенных грибов имеют высокую жироудерживающую способность — около 400, и могут давать при соединении с жирами однородные продукты. Водоудерживающая способность белковых концентратов в отсутствие солей составляет около 100, она возрастает до 200-223 при увеличении ионной силы до 0.3-1 (ионная сила 0.3 соответствует 0.3 М поваренной соли, или концентрации ее раствора 1,75).

Биомасса грибов привлекает внимание не только как источник белка. Липидная фракция грибов (содержание липидов в биомассе грибовпродуцентов белка не более 6) богата полиненасыщенными жирными кислотами. Наиболее благоприятный жирнокислотный состав у представителей класса фикомицел он. которые синтезируют полиненасыщенные жирные кислоты по у-линоеновому типу.

Этапы развития пищевой биотехнологии

Историю развития пищевой биотехнологии можно условно разделить на пять этапов:

  1. Древнейший период. В условиях природных катаклизмов — землетрясения, потопы, оледенения, пожары — происходили мутации растений и животных. Люди отбирали лучшие из них и научились сохранять семена и потомство мутагенных животных и растений, таким образом, повышая урожайность и продуктивность.
  2. В 60-х годах 19 века Грегор Мендель открыл законы расщепления признаков и независимого расщепления генов. Он проводил опыты с растениями и животными. Мендель развил теорию доминирования наследственных признаков.
  3. 70-е годы 20 века. Мюллер облучил рентгеном мушку дрозофилу и получил бескрылое потомство. Было доказано, что радиация, излучение — сильнейший мутаген (Чернобыль). Мутанты стали с успехом использоваться в растениеводстве для повышения урожайности.
  4. 80-е годы — новые растения стали выращивать с помощью культур клеток. В животноводстве были достигнуты большие успехи — самкам вводили гормоны, которые вызывали созревание большого количества яйцеклеток.
  5. Связан с развитием молекулярной биологии. Преодолен барьер видовой, половой несовместимости видов — новые виды животных, а также химеры. Доказана возможность конструирования ДНК.

В последние годы все большее влияние на здоровье населения планеты оказывает качество и структура питания. В 2009 г. опубликованы данные, что ежегодно в мире от недоедания и белково-калорийной недостаточности погибает 15 млн. человек.

Структура питания населения России характеризуется продолжающимся снижением потребления наиболее ценных в биологическом отношении пищевых продуктов.

Как следствие, на первый план выходят следующие параметры нарушения пищевого статуса.

Пищевая биотехнология — это отраслевая наука, которая на основании знаний микробиологии, биохимии, генетики, генной инженерии использует микроорганизмы и другие бактерии для производства молочнокислых пищевых продуктов и их сертификацию.

Задачи пищевой биотехнологии:

  1. Получение пищевых и технологических добавок.
  2. Использование биологического потенциала сырья животного происхождения с целью получения новых пищевых компонентов.
  3. Получение новых пищевых продуктов белкового происхождения.
  4. Широкое использование молочно-кислых продуцентов в пищевой биоиндустрии.
  5. Использование генно-модифицированного сырья для производства новых ферментных препаратов пищевого происхождения.
  6. Использование для пищевых целей продуктов микробного синтеза.
  7. Получение высококачественных продуктов в процессах брожения и ферментации.
  8. Создание продуктивных штаммов, микроорганизмов и внедрение новых методов в пищевой биотехнологии.

Пищевой статус и его значение

  1. Дефицит животных белков, достигающий 15-20% от рекомендуемых величин:
  2. Выраженный дефицит большинства витаминов, выявляющийся повсеместно у более половины населения 35%);
  3. Проблема недостаточности макро- и микроэлементов, таких как кальций, железо, фтор, селен, цинк, медь, йод.

В международном научном обществе существует четкое понимание того, что в связи с ростом народонаселения Земли, которое по прогнозам ученых должно достичь к 2050 г. 9-11 млрд. человек, необходимо удвоение и даже утроение мирового производства сельскохозяйственной продукции, что невозможно без применения трансгенных растений, создание которых многократно ускоряет процесс селекции культурных растений, увеличивает урожайность, удешевляет продукты питания, а также позволяет получить растения с такими свойствами, которые не могут быть получены традиционными методами. Принципы создания трансгенных растений и животных схожи. И в том и в другом случае в ДНК искусственно вносят чужеродные последовательности, которые встраивают, интегрируют генетическую информацию вида.

Путем генной инженерии возможно повышение урожайности на 40 — 50%. За последние 5 лет в мире земельной площади, используемые под трансгенные растения, увеличились с 8 млн. га до 50 млн. га и выше.

Нужно отметить, что ни одна новая технология не была объектом такого пристального внимания ученых всего мира. Это обусловлено тем что мнения ученых о безопасности генетически модифицированных источников питания расходятся. Нет ни одного научного факта против использования трансгенных продуктов. В тоже время некоторые специалисты считают, что существует риск выпуска нестабильного вида растений, передача заданных свойств сорнякам, влияние на биоразнообразие планеты, и главное потенциальная опасность для биологических объектов, для здоровья человека путем переноса встроенного гена в микрофлору кишечника или образования из модифицированных белков под воздействием нормальных ферментов, так называемых минорных компонентов, способных оказывать негативное влияние.

Сейчас ученые всего мира разделились на два лагеря по поводу трансгенных продуктов.

Первые считают, что 1) именно искусственное повышение урожайности поможет избежать голода. 2) искусственные растения способствуют сбережению природных ресурсов, например, пресной воды — выведен вид картофеля, который в случае нехватки воды светится в темноте (ввели ген медузы), это позволит фермерам следить за ходом созревания овоща и более экономно использовать воду при поливе. 3) В США трансгенными культурами засеяно свыше 50 млн га. и для этой продукции требуются рынки сбыта и др. К таким странам относятся США, Канада, Австралия, Мексика, Бразилия, Аргентина, Россия.

Вторые считают, что 1) искусственно созданные растения выйдут из-под контроля человека и быстро вытеснят природные формы, причем навсегда. 2) Эти растения совсем не изучены, требуют к себе осторожного и даже опасливого отношения. 3) Вал такой продукции, которая станет в будущем дешевой, подорвет экономику местных производителей. 4) Как быть с пищевыми запретами? Сможет ли мусульманин есть картофель, который содержит гены свиньи, а постящийся христианин — помидоры с генами коровы?

Ферментированные продукты из сырья растительного и животного происхождения:

  • алкогольные напитки
  • чай
  • кофе
  • хлеб
  • квашеная капуста
  • мясо и продукты
  • соевое молоко и др.
  • рыбные продукты
  • молочные продукты
  • различные консервы.

В настоящее время получили распространение два метода использования ферментов в технологии пищевых продуктов: ферментов, содержащихся в самом перерабатываемом сырье, или ферментов, вносимых в перерабатываемый материал.

Первый метод использовался с древнейших времен. Введение ферментов в обрабатываемый материал относится к более позднему периоду: здесь преследуется цель либо обусловить ферментативную реакцию, совершенно необходимую в получении целевого продукта, либо ускорить или дополнить действие уже содержащихся в материале ферментов.

В пищевой промышленности ферменты используются в виде ферментных препаратов, которые отличаются от ферментов тем что помимо активного белка они содержат различные балластные вещества. Ферментные препараты готовят из сырья растительного и животного происхождения, содержащего ферменты уже в готовом виде. В настоящее время производство ферментных препаратов ведется на промышленной основе с использованием микроорганизмов — активных продуцентов соответствующих ферментов. Большое число ферментных препаратов вырабатывается из поверхностных и глубинных культур микроскопических грибов, бактерий, дрожжей.

В технологии пищевых продуктов особенно велико значение карбогидраз и протеаз. Технологические операции, приемы в получении продукта в основном определяются действием этих ферментов: они обусловливают выход и качество продукта.

Не было никаких доказательств, что какие-либо ферменты, применяемые в технологии пищевых продуктов, вредны сами по себе, тем более, что в большинстве случаев ферменты в процессе обработки инактивируются. Однако необходимо учитывать возможность образования токсинов во время роста микроорганизмов, используемых для биосинтеза ферментов. Промышленность должна обеспечить гарантии против образования микотоксинов посредством надлежащей селекции штаммов, а против загрязнения патогенными микроорганизмами — посредством обычных микробиологических методов контроля.

Участие микроорганизмов в ферментировании продуктов осуществляется с помощью дрожжей, плесневых грибов, бактерий и их клеток. Целью ферментирования является придание обычной пище питательной ценности, лучшей усвояемости организмом, улучшения внешнего вида, увеличения срока ее хранения. Бактерии, которые добавляют в пишу, размножаясь в ней, выделяют ферменты которые изменяют, улучшают вкус и запах пиши и делают ее более полезной. Пример. Мечников начал пить ацидофильное молоко в возрасте 60 лет и говорил, если бы он начал его пить раньше, то прожил бы 200 лет. Доказано, что продукты, выделяемые лакто- и бифидобактериями, обновляют микрофлору кишечника животных и человека, вытесняют гнилостные, условно-патогенные и патогенные бактерии и продлевают жизнь.

В настоящее время многие ферментированные продукты производят в промышленном масштабе. Особый интерес проявляется к генетической модификации микроорганизмов, используемых в производстве хлеба и пива.

Огромный интерес ученых привлекают дрожжи, несмотря на то, что они хорошо изучены. В отношении дрожжей осуществляются следующие разработки:

Разработки, связанные с генетической модификацией пивных дрожжей:

  1. Включение в штаммы промышленных пивных дрожжей генов, кодирующих выработку фермента глюкоамилазы, для того, чтобы отказаться от добавления экзогенных ферментов в процессе пивоварения (солод, хмель).
  2. Включение в штаммы промышленных пекарских дрожжей более эффективной системы метаболизма мальтозы с целью сокращения времени на приготовление теста.
  3. Включение в штаммы промышленных дрожжей генов, кодирующих синтез белков лекарственного назначения (антител, интерферона, ферментов — пепсина, трипсина) и др.

В молочной промышленности проводятся работы по генетической модификации штаммов молочно-кислых бактерий в целях придания им способности вырабатывать антибиотики (бактериоцин) и ароматические вещества (молоко с запахом клубники, малины и др.).

Выпускаемые ферментные препараты представляют собой либо жидкости с концентрацией сухих веществ не менее 50%, либо порошки белого, серого или желтого цвета с определенной стандартной активностью.

Ферментные препараты позволяют значительно ускорять технологические процессы, увеличивать выход готовой продукции, повышать ее качество, экономить ценное сельскохозяйственное сырье, улучшать условия труда на производстве.

Факты, свидетельствующие в пользу создания трансгенных растений методом генной инженерии:

  1. Трансплантация генов позволяет создать продукты с повышенным содержанием белка.
  2. Устранить вредные для организма компоненты.
  3. Повысить урожайность и устойчивость выше, чем у обычных сельскохозяйственных культур, к вредителям и болезням.
  4. Созданы растения, содержание целлюлозы в которых во много раз больше обычного, что позволит выпускать бумагу, не вырубая леса и не загрязняя среду токсичными отходами.

Пищевые добавки, продуцируемые микроорганизмами, имеют следующие преимущества перед пищевыми добавками сырья животного и растительного происхождения:

  1. Продукт производится непрерывно, независимо от погоды, климата и др.
  2. Выделение и очистка конечного продукта очень проста (фильтрация).
  3. Продукт получается дешевле и доступнее.

История развития биотехнологии

За последние 20 лет биотехнология, благодаря своим специфическим преимуществам перед другими науками, совершила решительный прорыв на промышленный уровень, что в немалой степени обязано также развитию новых методов исследований и интенсификации процессов, открывших ранее неизвестные возможности в получении биопрепаратов, способов выделения, идентификации и очистки биологически активных веществ.

Биотехнология формировалась и эволюционировала по мере формирования и развития человеческого общества. Ее возникновение, становление и развитие условно можно подразделить на 4 периода.

1. Эмпирический период (от греч. еmperikos – опытный) или доисторический – самый длительный, охватывающий примерно 8000 лет, из которых более 6000 лет до н.э. и около 2000 лет н.э. Древние народы того времени интуитивно использовали приемы и способы изготовления хлеба, пива и некоторых других продуктов, которые теперь мы относим к разряду биотехнологических.

Известно, что шумеры – первые жители Месопотамии (на территории современного Ирака) создали цветущую в те времена цивилизацию. Они выпекали хлеб из кислого теста, владели искусством готовить пиво. Приобретенный опыт передавался из поколения в поколение, распространялся среди соседних народов (ассирийцев, вавилонян, египтян и древних индусов). В течение нескольких тысячелетий известен уксус, издревле приготавливавшийся в домашних условиях. Первая дистилляция в виноделии осуществлена в XII в.; водку из хлебных злаков впервые получили в XVI в.; шампанское известно с XVIII в.

К эмпирическому периоду относятся получение кисломолочных продуктов, квашеной капусты, медовых алкогольных напитков, силосование кормов.

Таким образом, народы исстари пользовались на практике биотехнологическими процессами, ничего не зная о микроорганизмах. Эмпиризм также был характерен и в практике использования полезных растений и животных.

В 1796 г. произошло важнейшее событие в биологии – Э. Дженнером были проведены первые в истории прививки человеку коровьей оспы.

2. Этиологический период (от греч. аitia – причина) в развитии биотехнологии охватывает вторую половину XIX в. И в первую треть ХХ в. (1856-1933 гг.). Он связан с выдающимися исследованиями великого французского ученого Л. Пастера (1822-1895) – основоположника научной микробиологии.

Пастер установил микробную природу брожения, доказал возможность жизни в бескислородных условиях, создал научные основы вакцинопрофилактики и др.

В этот же период творили его выдающиеся ученики, сотрудники и коллегм: Э.Дюкло, Э.Ру, Ш.Э.Шамберлан, И.И.Мечников; Р.Кох, Д.Листер, Г.Риккетс, Д.Ивановский и др.

В 1859 г. Л.Пастер приготовил жидкую питательную среду, Р.Кох в 1881 г. предложил метод культивирования бактерий на стерильных ломтиках картофеля и на агаризованных питательных средах. И, как следствие этого, удалось доказать индивидуальность микробов и получить их в чистых культурах. Более того, каждый вид мог быть размножен на питательных средах и использован в целях воспроизведения соответствующих процессов (бродильных, окислительных и др.).

Читайте также:  WATT-N – производитель «чистого» спортивного питания

Среди достижений 2-го периода особо стоит отметить следующие:

– 1856 – чешский монах Г.Мендель открыл законы доминирования признаков и ввел понятие единиц наследственности в виде дискретного фактора, который передается от родителей потомкам;

– 1769 – Ф.Милер выделил «нуклеин» (ДНК) из лейкоцитов;

– 1883 – И.Мечников разработал теорию клеточного иммунитета;

– 1984 – Ф.Леффлер изолировал и культивировал возбудителя дифтерии;

– 1892 – Д.Ивановский открыл вирусы;

– 1893 – В.Оствальд установил каталитическую функцию ферментов ;

– 1902 – Г.Хаберланд показал возможность культивирования клеток растений в питательных растворах;

– 1912 – Ц.Нейберг раскрыл механизм процессов брожения;

– 1913 – Л.Михаэлис и М.Ментен разработали кинетику ферментативных реакций;

-1926 – Х.Морган сформулировал хромосомную теорию наследственности;

– 1928 – Ф.Гриффит описал явление «трансформации» у бактерий;

– 1932 – М.Кнолль и Э.Руска изобрели электронный микроскоп.

В этот период было начато изготовление прессованных пищевых дрожжей, а также продуктов метаболизма – ацетона, бутанола, лимонной и молочной кислот, во Франции приступили к созданию биоустановок для микробиологической очистки сточных вод.

Тем не менее, накопление большой массы клеток одного возраста оставалось исключительно трудоемким процессом. Вот почему требовался принципиально иной подход для решения многих задач в области биотехнологии.

3. Биотехнический период – начался в 1933 г. и длился до 1972 г.

В 1933 г. А.Клюйвер и А.Х.Перкин опубликовали работу «Методы изучения обмен веществ у плесневых грибов», в которой изложили основные технические приемы, а также подходы к оценке получаемых результатов при глубинном культивировании грибов. Началось внедрение в биотехнологию крупномасштабного герметизированного оборудования, обеспечивающего проведение процессов в стерильных условиях.

Особенно мощный толчок в развитии промышленного биотехнологического оборудования был отмечен в период становления и развития производства антибиотиков (время второй мировой войны 1939-1945 гг., когда возникла острая необходимость в противомикробных препаратах для лечения больных с инфицированными ранами).

Все прогрессивное в области биотехнологических и технических дисциплин, достигнутое к тому времени, нашло свое отражение в биотехнологии.

4. Геннотехнический период (от греч. genesis- происхождение, возникновение, рождение) начался с 1972 г., когда П. Берг создал первую рекомбинацию молекулы ДНК, тем самым показав возможность направленных манипуляцией с генетическим материалом бактерий.

Естественно, что без фундаментальной работы Ф.Крика и Дж. Уотсона по установлению структуры ДНК было бы невозможно достигнуть современных результатов в области биотехнологии. Выяснение механизмов функционирования и репликации ДНК, выделение и изучение специфических ферментов привело к формированию строго научного подхода к разработке биотехнических процессов на основе генноинженерных манипуляций.

Создание новых методов исследований явилось необходимой предпосылкой развития биотехнологии 4-ом периоде.

Молекулярно-генетический период развития микробиологии связан с выходом естественных наук на молекулярный уровень и дальнейшим развитием микробиологии, вирусологии и иммунологии. Создание электронного микроскопа сделало видимым мир вирусов и макромолекулярных соединений. Генетика бактерий пролила свет на проблемы изменчивости генов и создала целую науку – молекулярную биологию. Именно на бактериях доказана роль ДНК в передаче наследственных признаков. Расшифровка основных принципов кодирования генетической информации в ДНК бактерий, а также универсальность генетического кода бактерий и вирусов позволили установить общие молекулярно-генетические закономерности, свойственные высшим организмам.

Пол Берг в 1972 г. получил in vitro рекомбинантную ДНК, состоящую из фрагментов разных молекул вирусной и бактериальной ДНК. Кроме того он расшифровал геном кишечной палочки, что сделало возможным искусственное конструирование генов и пересадку отдельных генов из одних клеток в другие. К настоящему времени методы генной инженерии используют в производстве широкого спектра биологически активных веществ.

Использование разнообразных форм микроорганизмов сделало в ХХ в. актуальной теоретическую и практическую разработку вопросов их культивирования с целью интенсификации вызываемых ими процессов. Это, в свою очередь, обусловило необходимость изучения основ регуляции роста и развития микроорганизмов, поиск способов воздействия на их обмен веществ, что определило формирование еще одного направления современной микробиологии – управляемого культивирования микроорганизмов.

Биотехнологический период – это ХХI в. Уже сегодня биотехнология стремительно выдвигается на передний край научно-технического прогресса. Этому способствует бурное развитие современной молекулярной биологии и генетики, опирающихся на достижения химии и физики, и острая практическая потребность в новых технологиях хозяйственной деятельности человека. Общее определение биотехнологии должно отражать «применение организмов, биологических систем или биологических процессов в промышленности, в сельском хозяйстве и вспомогательных отраслях». Биотехнологические достижения призваны ликвидировать нехватку продовольствия, энергии, минеральных ресурсов, улучшить состояние здравоохранения и охрана окружающей среды. Поток информации велик. Уже создается история биотехнологии: эра брожений, эра антибиотиков (1941-1969). Эра новой биотехнологии (после 1975 г.) началась после открытия Дж.Уотсоном и Ф.Криком (лауреатами Нобелевской премии) строения ДНК. Использование мощной и многообразной каталитической системы микроорганизмов, способной трансформировать природные органические вещества растительного происхождения в любые нужные человеку продукты, возможно в сравнительно простых, технически несложных управляемых сооружениях независимо от климатических условий и при малых энергетических затратах.

Развитие биотехнологии определяется высоким уровнем технологических новшеств. Здесь прежде всего имеются в виду производство питания за счет широкомасштабного выращивания дрожжей, водорослей и бактерий для получения белков, аминокислот, витаминов и ферментов; повышение продуктивности сельскохозяйственных культур (клонирование и отбор разновидностей растений на основе тканевых культур in vitro); биоинсектициды, биоудобрения; уменьшение загрязнения окружающей среды (очистка сточных вод, переработка отходов и побочных продуктов сельского хозяйства и промышленности).

Развитие биотехнологии и новых отраслей связано с эволюцией общего направления биологических исследований и возможностями получения легкодоступных и возобновляемых ресурсов, важных для жизни и благосостояния людей. Что касается более современных биотехнологических процессов, то они основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток или клеточных органелл. Другими словами, развитие биотехнологии в огромной степени определяется исследованиями в области микробиологии, биохимии, энзимологии и генетики микроорганизмов.

В перспективе на основе методов рекомбинантных ДНК биотехнология позволит освоить синтез растительных белков и добиться искусственного фотосинтеза и фиксации молекулярного азота в промышленных масштабах, решения экологических проблем, включая переработку отходов и борьбу с загрязнениями окружающей среды. Биологические препараты, практически значимые в растениеводстве, животноводстве, хранении и переработки сельскохозяйственной продукции, приведут к снижению энергоемкости сельскохозяйственного производства, стабильности экологического равновесия и сбалансированному (функциональному) питанию населения. Биотехнология возобновляемого сырья позволит получать продукты питания и производить различные материальные ценности.

Отечественные ученые вписали немало славных страниц в развитие и становление общей сельскохозяйственной микробиологии, родившихся на стыке других, ранее сформировавшихся наук. История любой науки- это история идей, история их рождения, борьбы, утверждения и развития. Следует вспомнить слова русского писателя А.М. Горького: «Нет силы более могучей, чем знание: человек, вооруженный знаниями, непобедим». Славные имена русских ученых – микробиологов всегда занимают достойное место в истории микробиологии.

Основная задача биотехнологии – помочь сельскому хозяйству получить продукты питания с минимальным применением средств химизации, а вторичное сырье (не отходы) – превращать в полезные для человека продукты и товары. Перерабатывающую же промышленность биотехнология должна превратить в безотходное производство с использованием различных схем очистки производственных стоков и твердых «отходов».

Не нашли то, что искали? Воспользуйтесь поиском:

История развития биотехнологии

Биотехнология (от греч. bios жизнь, techne искусство, мастерство и logos слово, учение) – это получение полезных для человека продуктов, в процессе которого используется биохимическая деятельность микроорганизмов, изолированных клеток или их компонентов. Сами того не подозревая, люди применяли биотехнологические методы с древнейших времен.

Занимаясь хлебопечением, виноделием, пивоварением, получением кисло-молочных продуктов, сыров, пищевого уксуса, они использовали деятельность микроорганизмов. Огромную роль в разработке научных основ биотехнологии сыграли работы одного, .ид величайших естествоиспытателей 19-го века – француза Луи Пастера (1822-1895). Начав свою научную карьеру с чисто химических работ, наиболее известной из которых является исследование винных кислот, послужившее толчком к развитию стереохимии, в 50-х годах 19-го века Пастор занялся изучением брожения.

В 1857 г. появляется его работа, в которой Пастер доказывает, что спиртовое брожение сахара есть процесс, тесно связанный с жизнедеятельностью дрожжевых грибков, которые питаются и размножаются за счет бродящей жидкости, при этом часть сахара тратится на постройку дрожжевых клеток и образование побочных продуктов – глицерина и янтарной кислоты. Пастер опроверг господствовавшие тогда взгляды Либиха на брожение как на механико-химический акт.

Изучение масляного брожения привело к открытию важного факта: было показано, что микробы масляного брожения могут развиваться только в отсутствие воздуха. Были установлены два типа бактерий -аэробные, требующие длясвоей жизни воздух, и анаэробные, развивающиеся без него. Позже Пастер опроверг теорию самозарождения микроорганизмов. Его работы по вопросу самозарождения имели очень большое значение для развития и применения антисептических методов в хирургии.

Пастер всегда переходил от теории к практике. Изучив спиртовое, масляное и молочное брожение и сделав важное обобщение о брожении как жизни в отсутствие воздуха, он занялся вопросами, имеющими важное промышленное значение – изучением болезней вина и условий образования уксуса. Он выработал оптимальные правила для образования уксуса и выяснил причины вредных изменений, которым подвергается вино. Для предохранения вина от вредных изменений Пастер предложил его повторно нагревать. Позже такое нагревание стали использовать для увеличения сроков хранения пива и молока – этот процесс получил название “пастеризации”.

Велика роль Пастера в разработке вакцин против многих инфекционных болезней, в частности, сибирской язвы и бешенства. В 1888 г. Пастер создал и возглавил научно-исследовательский институт микробиологии (Пастеровский институт). Работы Пастера оказали, настолько большое влияние на развитие микробиологии (термина “биотехнология” тогда не существовало), что почти столетний период с 60-х годов 19-го века до 40-х годов 20-го века часто называют пастеровской эрой. На основе работ Пастера и его учеников в это время были созданы производства этанола, бутанола, ацетона, глицерина, лимонной кислоты, многих вакцин, организованы процессы биологической очистки сточных вод.

Начало следующему этапу развития той отрасли знаний, которую сейчас называют биотехнологией, положила работа английского микробиолога А. Флеминга (1928), отметившего способность нитчатого гриба зеленой плесени (Penicillum notatum) вызывать гибель стафилококков. Дальнейнгая работа привела к выделению в чистом виде первого антибиотика пенициллина, открывшего эру антибиотиков (1940-1960 гг.). За пенициллином последовало получение стрептомицина, тетрациклинов, эритромицина и других антибиотиков, начала развиваться микробиологическая промышленность. В 1953 г. в качестве самостоятельной науки о себе заявила молекулярная биология.

Это было связано с открытием Д. Уотсоном и Ф. Криком знаменитой двойной спирали дезоксирибонуклеиновой кислоты (ДНК) и постулированием матричного механизма ее синтеза. Вдечение постантибиотической эры (1960-1975 гг.) были созданы технологии получения аминокислот, витаминов В2 и B12, биогаза, микробиологического белка на парафинах, иммобилизованных ферментов. В 70-х годах 20-го века появился термин “биотехнология”. Начало современного этапа развития биотехнологии было положено в 1972 г. публикацией американского биохимика Пола Берга с сотрудниками.

Этот год принято считать годом рождения новой отрасли молекулярной биологии – генетической (генной) инженерии. Группе ученых под руководством П. Берга удалось получить in vitro рекомбинантную, т.е. созданную методами генетической инженерии, ДНК. Генетическая инженерия существенно расширила экспериментальные границы молекулярной биологии, поскольку позволила вводить в различные типы клеток чужеродную ДНК. Это дало возможность выявлять общебиологические закономерности организации и выражения генетической информации в различных организмах.

Данный подход открыл перспективы создания принципиально новых продуцентов биологически активных веществ, а также животных и растений, несущих активные чужеродные гены. Использование методов генетической инженерии позволило решить многие практически важные задачи. Прежде всего, это получение лекарственных средств, в частности, инсулина и интерферона путем бактериального синтеза. Большим достижением является создание диагностических препаратов для выявления СПИДа.

Разработка методов получения так называемых трансгенных растений открывает новые возможности для растениеводства в создании сельскохозяйственных культур, устойчивых к экстремальным воздействиям и инфекциям.

Этот метод решения проблемы обеспечения населения Земли продуктами питания, хотя и вызывает споры об их потенциальной опасности, продолжает развиваться. Биотехнология связана тысячами нитей с другими перспективными направлениями науки и техники. Так, соединение биотехнологии и нанотехнологий дает новое направление – нанобиотехнологию, что радикально меняет стратегию создания новых препаратов. В частности, это позволяет осуществлять конструирование препаратов под конкретную задачу.

Использование достижений биотехнологии сделало возможным создание биосенсоров для индикации биологически активных веществ. В настоящее время в мире действуют более 3000 биотехнологических компаний, и число их постоянно растет. В наиболее развитых странах мира по инвестиционной привлекательности биотехнологии уступают сегодня лишь информационным технологиям. Например, в США 70 процентов финансирования науки расходуется на исследования в области биотехнологий, это более 100 млрд долл. в год. В Китае эта цифра составляет свыше 1 млрд долларов, в России -всего лишь несколько десятков миллионов долларов. Доля нашей страны в объеме мировой биотехнологической продукции сегодня 0,2-0,5 процента, хотя в конце 80-х годов она была в десять раз больше.

Многие биотехнологические производства полностью исчезли. Примером тому является производство важнейшей кормовой добавки – лизина. СССР был лидером по выпуску этой аминокислоты и обгонял США в десять раз. Сегодня лизин в России вообще не выпускается и завозится только по импорту. Резко сократилось производство кормового белка.

Закупается подавляющая часть биотехнологической продукции, использующейся в отечественной пищевой промышленности (это прежде всего закваски для производства кисло-молочных продуктов, дрожжи и ферменты для производства спирта и мясопереработки). Такая же ситуация сложилась и с медицинскими препаратами, производимыми на основе биотехнологий. До начала 90-х годов страна полностью обеспечивала себя антибиотиками. Сегодня почти все заводы по их производству либо устарели, либо вообще не работают. Для России сегодня важно не догонять западных производителей, а определить те разделы биотехнологии, которыми еще никто не занимается. За последний год

Обществом биотехнологов России проведено несколько научно-практических конференций, на которых были выработаны приоритетные направления развития науки и производства. В России остался большой потенциал, потеряны еще не все позиции. Необходимо наращивать усилия по разработке новых перспективных биотехнологий. По мнению экспертов, продукция, получаемая с применением биотехнологий, составит к 2010 году около 30 % мирового рынка химикатов. Именно развитие биотехнологии будет определять качество жизни людей в XXI веке. По образному выражению президента Общества биотехнологов России А. А. Воробьева: “Биотехнологии – лакмусовая бумажка для страны”.

С.В. Макаров, Т.Е. Никифорова, Н.А. Козлов

Развитие биотехнологии

Биотехнология сегодня развивается бурными темпами. Как наука, она изучает внедрение производственных процессов, в основе которых лежит практическое использование микроорганизмов, всевозможных биологических систем. Это не только растительные или животные ткани, но и протопласты, рекомбинантные ДНК, а также полностью генетически модифицированные организмы.

История развития биотехнологии

Глубоко в древности биотехнология развивалась эмпирическим путем: выпечка хлеба, изготовление вина, сыроварение, силосование кормов для скота – все это различные микробиологические процессы, за которыми веками велись многовековые наблюдения.

Настоящая же генная инженерия, биотехнология, как современный вид науки, начала развиваться только лишь в середине прошлого столетия.

Основные этапы и периоды развития биотехнологии

История развития биотехнологии условно делится на три последовательных этапа. Первый – это развитие биотехнологии в разрезе исторического аспекта.

Читайте также:  Сравнение Energy Diet с гейнером

При раскопках древних поселений в Месопотамии, в Египте, а также Греции были обнаружены остатки больших и малых пекарен и пивоварен.

Известно, что уже шумеры умели делать пиво, причем ассортимент его был довольно широк (около двадцати различных сортов). На территории Древней Греции и Римской империи было активно развито виноделие и производство сыра.

Изготовляли и льняное волокно, этот процесс происходит с участием микроскопических грибов и бактерий.

В конце девятнадцатого века развитие биотехнологии вступило во второй этап, она начала развиваться, как наука. Появились первые ученые генетики, микробиологи и вирусологи.

В начале прошлого века были созданы первичные установки по производству метана. Отходы сельскохозяйственного производства превращались в биологический газ и органическое удобрение.

В середине двадцатого века начали производить антибиотики, как следствие, появились предприятия, которые с помощью микроорганизмов не только аминокислоты и витамины, но и органические кислоты, а также ферменты.

В конце двадцатого века развилась генная и клеточная инженерия, что ознаменовало третий этап развития биотехнологии. Фактическим «днем рождения» этого вида современной науки считают 1972-ой год, время создания первой гибридной ДНК, в которую встроили чужеродные гены.

Итак, биотехнология, как постоянно и динамично развивающаяся наука, охватывает несколько больших периодов. Первый их них – конец 19-го и начало двадцатого века. Это было время первых великих свершений, таких, как открытие структуры белков или применение вирусов при изучении генетики клеточных организмов.

Во втором периоде биотехнология сформировалась, как научно-техническая отрасль, уже производящая препараты. Наконец, в третьем периоде начала развиваться генная и клеточная инженерия.

Основные направления развития биотехнологии

Основа биотехнологии – это генетическая (клеточная) инженерия и биохимия. Развитие клеточной инженерии считается на данный момент одним из самых перспективных направлений.

Ученые проводят культивирование клеток микроорганизмов, растений и животных, осуществляются такие манипуляции, как слияние клеток либо пересадка органоидов.

Основными направлениями развития биотехнологии считаются:

  • создание новых видов продуктов питания и животных кормов, производство их;
  • выведение новых штаммов полезных микроорганизмов;
  • создание новых пород животных;
  • выведение новых сортов растений;
  • создание и применение препаратов по защите растений от болезней и вредителей;
  • применение новых биотехнологических методов по защите окружающей среды.

Кроме этого, активно развивается направление биологически активных соединений с помощью микроорганизмов и культивируемых эукариотических клеток. Сюда входят ферменты, витамины, а также гормоны и антибиотики.

Значение биохимии для биотехнологии

Биотехнология как наука на современном этапе является синтезом разделов биохимии в соединении с генной инженерией. Например, на данный момент ведутся активные исследования в области экологической биотехнологии, но самая большая роль биохимии в развитии биотехнологий – создание новых методов производства продуктов питания.

Дело в том, что почти любая технология по производству пищевых продуктов основана на биохимических процессах.

Поэтому изучение процесса обмена веществ в живой клетке – актуальный вопрос для развития биотехнологии. Это имеет большое значение не только для животноводства и растениеводства или переработки промышленным способом сельскохозяйственного сырья, но и для медицины, а также экологии.

Состояние и перспективы развития биотехнологии в современном мире

Современная биотехнология привлекает внимание инвесторов не только в нашей стране, но и во всем мире. Эксперты и аналитики прогнозируют, что биотехнологии станут самым динамично развивающимся и самым прибыльным бизнесом нынешнего, XXI века.

Быстрыми темпами развиваются такие отрасли, как современные биологические методы защиты культурных растений, биоэнергетика и биодеградируемые полимеры, а также природоохранные биотехнологии. Ведутся научные работы по созданию новых биополимеров, в будущем они могут заменить ныне популярные ныне пластмассы.

Биополимеры имеют большое преимущество в сравнении с пластмассами, так как они нетоксичны и могут разлагаться после их применения, не загрязняя при этом окружающее пространство.

Конструирование необходимых генов даст возможность управлять жизнедеятельностью не только растений, но и животных, создавать новые организмы с иными свойствами.

Чем объясняется бурное развитие биотехнологии

Современные биотехнологии сыграют большую роль в качественном улучшении жизни человека, развитию экономического роста стран. Посредством биотехнологий получают новые средства для диагностики, вакцины, продукты питания, лекарства.

Биотехнология помогает в увеличении урожайности всех злаковых культур, что более чем актуально, принимая во внимание рост численности населения нашей планеты.

В некоторых странах, где значительные объемы биомассы не используются полностью, биотехнология в обозримом будущем превратит их в ценные продукты или в биологические виды топлива. Биотехнология все больше перестает быть прикладной наукой, она активно входит в обычную жизнь людей, помогая решать насущные проблемы современного человечества.

Развитие биотехнологий в России

Когда говорят о развитии биотехнологий в России, приходится учитывать длительный период упадка и деградации научных учреждений. Сейчас, после нескольких лет интенсивного роста, российские биотехнологии представлены на мировом рынке в количестве 0,1%, а в 1885 году СССР имел долю 5% на рынке продукции, относимой к биотехнологиям. Это медицинские препараты, ферменты, гормональные препараты, чистые линии микроорганизмов, используемых в научных исследованиях, сельскохозяйственном производстве и очистке окружающей среды от вредных отходов.

Интересна судьба самого громкого и скандального проекта, ставшего достоянием гласности в конце восьмидесятых. Это БВК, белково-витаминные концентраты, получаемые из парафинов нефти при использовании специально выведенных бактериальных культур.

В прессе был поднят шум, тему обсуждали эмоционально, общественность требовала закрытия «вредного проекта». Однако работа была уже сделана – бактерии, питающиеся нефтепродуктами, существовали.

Для них нашлась полезная функция: очистка воды и земли от разлившейся нефти. Сейчас вода в морских и речных портах содержит значительно меньше нефтепродуктов, чем в 70-80 годы, благодаря их биологическому разложению.

При помощи прожорливых бактерий очищают территорию на предприятиях от мазута и других нефтепродуктов. Трудно переоценить пользу от этих микроорганизмов – ведь нефтяная пленка в двадцатом веке грозила погубить моря и океаны!

Производство белковой продукции из нефти не было поставлено на поток, но польза от данной биотехнологии несомненна!

В 2012 году российское правительство значительно увеличило государственное финансирование научных исследований в этой отрасли.

Интересно, что ряд проектов осуществляется на общественные пожертвования. К таким проектам относится исследование микрофлоры кишечника и на основе результатов – научно разработанные рекомендации по питанию, физическим нагрузкам, образу жизни. Эта тема популярна в России и в мире.

Этические аспекты развития биотехнологии

Перспективы развития биотехнологий поражают воображение, а в ряде случаев вызывают страх и у людей. По поводу тех или иных исследований периодически разгораются дискуссии, и противники генной инженерии, клонирования организмов или исследования человеческого генома неоднократно требовали запретить все работы в этом направлении. Примером общественных протестов служит упоминавшаяся технология БВК.

Много страстей кипело вокруг генной инженерии. Люди опасались появления уродливых, непредсказуемых, всемогущих существ, созданных путем комбинации генов от несовместимых в природе видов. Фантастические произведения и фильмы способствовали распространению страхов.

Были и научно обоснованные возражения: генетически модифицированные организмы не изучены, употребление кукурузы и сои с модифицированными генами может вызвать болезни. В результате в Европе и России запрещено выращивание и использование ГМО.

Развитие биотехнологии и генной инженерии в современной науке

Биотехнологии и генная инженерия, более чем все остальные, связана с фундаментальными научными исследованиями. Создание организмов с «заданными параметрами», лечение генетически обусловленных болезней, производство белковой массы вне организма, внедрение в организм «биологических чипов», влияющих на жизнедеятельность – все эти направления нуждаются в дорогостоящих исследованиях, сложном оборудовании и высококвалифицированных специалистов.

На стыке двадцатого и двадцать первого века был задуман и осуществлен грандиозный проект – прочитан геном человека. Это был большой труд, в котором участвовало много лабораторий в разных странах мира. Одним из продуктов этих исследований стало появление технологии идентификации личности по ДНК, получение информации о родстве (установление отцовства). Но от прочтения генома ученые ожидали большего. Информация, зашифрованная в ДНК, огромна и ее изучение, расшифровка еще сложнее, чем процедура исследований.

Вклад биотехнологии в развитие медицины

Одним из «подарков дьявола» считалась возможность определения по ДНК генетически запрограммированных болезней. С одной стороны, это возможность предупредить человека об опасностях, но такая информация сама по себе травматична, и способна провоцировать болезни.

Однако «предопределенность» болезней оказалась отнюдь не абсолютной. У вполне здоровых пожилых людей при исследовании обнаруживаются гены болезней, от которых они должны давно умереть. Хотя наследственность никто не отменял, как и генетическую предрасположенность к тем или иным заболеваниям.

Сейчас идет речь не о том, чтобы просто получать информацию о будущих болезнях, но о том, что есть возможность исправлять дефектные участки ДНК. И это было бы прекрасно – ведь накопление генетических ошибок в человеческом сообществе способствует деградации вида гомо сапиенс.

Проблемы биотехнологии

Сейчас возникают споры о генной медицине, о клонировании организмов, об этических вопросах исследования стволовых клеток. На повестке дня – «биопринтер», при помощи которого признается возможным выращивание органов для трансплантации.

На исследования в этом направлении направляются огромные средства, прежде всего в США. Одновременно возникают опасения: вдруг возникнет тенденция выращивания клонов в качестве «идеальных доноров»?

Впрочем, на пути многих амбициозных и не слишком щепетильных в нравственном отношении проектов возникают препятствия, положенные самой природой.

Фантастические успехи от применения стволовых клеток для лечения и омоложения – и их перерождение в злокачественные опухоли; рождение клонированных животных – и их ранняя смерть, слабое здоровье.

Живая материя по-прежнему непостижима, несмотря на успехи в ее познании, и пределы человеческого вмешательства в ее основы – ограничены.

Развитие биотехнологии до 2020

Перспективы биотехнологии на ближайшее будущее можно разделить на рекламные и научно обоснованные. К широко разрекламированным проектам относятся, например, «таблетки молодости» – их обещают выпустить на рынок как раз к 2020 году. Однако скептики говорят, что таких сенсаций было много, начиная со времен алхимии…

Более реалистично выглядит 3D принтер, наносящий клеточные культуры на матрицу с питательным раствором, и формирующий искусственные органы. Еще один медицинский проект – лечение тяжелых ожогов путем нанесения на пораженный участок стволовых клеток, которые в считанные дни образуют новую кожу.

Генетический ремонт – направление, которое развивается и будет развиваться, и в него инвестируются большие деньги.

Компании, занимающиеся биотехнологиями

Лидерами в области биотехнологий являются фармацевтические фирмы США, Китая, Индии, Европы.

Биотехнологии условно подразделяют на группы:

  • красная биотехнология – связанная с медициной и «лечением» генетического кода, на рынке биотехнологий ей принадлежит доля более 70%;
  • зеленая – генная инженерия, работающая для сельского хозяйства;
  • белая – производство биотооплива;
  • серая – защита экологии, борьба с отходами;
  • синяя – использование биологических ресурсов океана.

Лидеры «красной биотехнологии» – американские фирмы Genentech, Novartis, Merck&Co, Pfizer, Johnson & Johnson, Sanofi.

В области разработки и производства ГМО лидирует транснациональная компания Monsanto Company.

Белая, серая, синяя биотехнологии существенно отстают от лидеров. Их полезная деятельность дает не слишком быстрый экономический эффект, поэтому в списках лидеров они не значатся.

BioTech USA – Обзор спортивного питания

Содержание

Спортивное питание BioTech USA [ править | править код ]

Описание бренда спортивного питания

Описание, заявленное производителем [ править | править код ]

Бренд спортивного питания BioTech USA имеет более чем 20 летнюю историю в индустрии производства и распространения спортивных добавок. BioTech USA производит высококачественные и инновационные линейки продуктов.

Линейки спортпита BioTech предлагают широкий выбор: жидкие формы и специальные креатиновые добавки, и комплексные гейнеры, протеины и многое другое.

В 1999 году, в связи с увеличением спроса на продукцию, менеджеры американской компании Biotech USA принимают стратегическое решение создать новую инновационную линейку спортивного питания для европейских стран под названием Biotech Nutrition.

Вся продукция «Биотек Нутришн» изготавливается из натуральных и безопасных компонентов, имеет сертификаты качества, соответствующие стандартам ISO 9001 и GMP.

Инновационность – это главный принцип BioTech USA. Благодаря непрерывной исследовательской работе и технологическому совершенствованию мы создаем продукты профессионального уровня. BioTech USA – одна из крупнейших исследовательских баз, соответствующая мировым стандартам, инженеры работают только в рамках современного научного подхода, изготавливая самые продвинутые продукты спортивного питания. Основной закон – высокое качество, таким образом производят только высококачественное спортивное питание для покупателей.

BioTech USA – это прогрессивность, отличные упаковки, высокие технологии и самые распространенные продукты в мире.

Результатами работы BioTech USA являются: несколько патентов, уникальные смеси, функциональные продукты и огромный выбор первоклассного спортивного питания. Цель BioTech USA – удовлетворить нужды каждого клиента, и она требует разрабатывать все новые и новые продукты. Последняя линейка продуктов BRUTAL, которая разработана для удовлетворения самых тонких потребностей организма атлетов, бодибилдеров и других спортсменов. Каждый BRUTAL продукт входит в высшую категорию качества.

Компания BioTechUSA присутствует на рынке с 1999 года и предлагает высококачественные пищевые добавки, среди которых широко представлены белки в порошковой форме, предтренировочные смеси, продукты для повышения выносливости, диетические товары и более 40 витаминов с высоким содержанием активных ингредиентов. Сегодня наш ассортимент включает более 600 продуктов, которые мы постоянно улучшаем, применяя новые разработки и инновации в ответ на пожелания наших клиентов. В нашем портфеле вы непременно найдете продукты, не содержащие глютена и глюкозы, а также альтернативы, разработанные специально для вегетарианцев. Флагманский продукт нашей линейки белковых препаратов – Iso Whey Zero – производится и распространяется компанией BioTechUSA.

500 штатных сотрудников, 130 франчайзинговых магазинов, расположенных во Франции, Германии, Австрии, Словакии и Венгрии, и дистрибьюторская сеть в 70 странах сделали BioTechUSA одним из крупнейших и наиболее динамично растущих производителей спортивных пищевых добавок.

Для того чтобы обеспечить высокое качество услуг и продуктов, все члены команды BiotechUSA участвуют в централизованных программах подготовки и сдают квалификационный экзамен в области питания, спортивных пищевых добавок и спортивных наук. В нашей сети магазинов работают специалисты, готовые предоставить бесплатные консультации, чтобы все наши клиенты могли получить персональную услугу и подобрать пищевую добавку, наиболее эффективную для их возраста, пола, состояния здоровья и поставленной задачи.

Мы прилагаем все усилия, чтобы предоставить выбор профессиональным спортсменам и любителям, независимо от вида спорта, которым они занимаются. Мы подготовили специальную линию продуктов под названием Endurance для тех, кто занимается спортивными дисциплинами, требующими большой выносливости. Наша компания работает вместе со спортсменами и партнерами, которые своим личным примером вдохновляют большое количество людей жить здоровой и наполненной жизнью. Чемпионы бодибилдинга и фитнеса, популярные в социальных медиа, такие как Юлисис, Роджер Снайпс, Стефани Дэвис и Сандра Приккер, обладатели титулов IFBB Bikini Fitness PRO Вираг Киш и IFBB Men’s Physique PRO Робин Балог пользуются нашими продуктами и дают им высокую оценку. BioTechUSA спонсирует первоклассных спортсменов с выдающимися достижениями – пловчиху Катинку Хоссу, которую также называют «железной леди», фехтовальщика Арона Силадьи, каноистку Дануту Козак, ватерполиста – игрока национальной сборной Мартона Тота, гандболистку Сабину Тапаи и пловца-параолимпийца Тамаша Сорса. Помимо спонсирования профессионалов мы оказываем поддержку талантливым спортсменам-любителям, среди которых есть также бегуны и триатлонисты.

Добавить комментарий
BioTech USA
Производитель :
Сеть продаж :
Маркетинг
Популярность :
Контакты
Телефон:
Официальный сайт: